Skip to main content

Inner Potential of Generating Pulses as a Consequence of Recurrent Principles and Specific Computing Architecture

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3980))

Included in the following conference series:

Abstract

This study presents the existence of inner potential of generating pulses in physics based on existence of recurrent formulation of fundamental physics principles. It is shown that basic principles in physics (like the principle of constant light in vacuum in any reference system and the uncertainty principle in quantum theory) make use in an implicit manner of terms which are defining also the conclusion. For example, the idea of constant light speed implies the use of a measuring method based on a clocks’ synchronization performed using a supposed antecedent light signal transmitted and reflected towards the observer. In a similar manner, the uncertainty principle implies the existence of a measuring method for position or time correlated with a subsequent measurement for momentum or energy (measurements which also make use of position and time). For avoiding logic contradictions, it is shown that the most simple solution consists in defining the class of reference systems (large-scale elements which are not affected by propagation phenomena or interaction)) and the class of transient phenomena (small-scale bodies or waves which undergo an interaction). The inner potential of such a classification (based on different-scale elements) is also shown, together with a specific architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baader, F.: The instance problem and the most specific concept in the description logic w.r.t. terminological cycles with descriptive semantics. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 64–78. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  2. Toma, C.: A connection between special relativity and quantum theory based on non-commutative properties and system - wave interaction. Balkan Physics Letters Supplement 5, 2509–2513 (1997)

    Google Scholar 

  3. Takeda, M., Inenaga, S., Bannai, H.: Discovering most classificatory patterns for very expressive pattern classes. In: Grieser, G., Tanaka, Y., Yamamoto, A. (eds.) DS 2003. LNCS (LNAI), vol. 2843, pp. 486–493. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  4. Toma, C.: The advantages of presenting special relativity using modern concepts. Balkan Physics Letters Supplement 5, 2334–2337 (1997)

    Google Scholar 

  5. Cattani, C.: Harmonic Wavelets towards Solution of Nonlinear PDE. Computers and Mathematics with Applications 50, 1191–1210 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rushchitsky, J.J., Cattani, C., Terletskaya, E.V.: Wavelet Analysis of the evolution of a solitary wave in a composite material. International Applied Mechanics 40(3), 311–318 (2004)

    Article  Google Scholar 

  7. Toma, C.: About some space relations of the electromagnetic interaction. Revue Roumaine des Sciences Techniques, Serie Electrotechnique et Energetique 34(3), 431–435 (1989)

    Google Scholar 

  8. Toma, C.: An extension of the notion of observability at filtering and sampling devices. In: Proceedings of the International Symposium on Signals, Circuits and Systems Iasi SCS 2001, Romania, pp. 233–236 (2001)

    Google Scholar 

  9. Toma, G.: Practical test-functions generated by computer algorithms. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3482, pp. 576–585. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Toma, C.: The possibility of appearing acausal pulses as solutions of the wave equation. The Hyperion Scientific Journal 4(1), 25–28 (2004)

    MathSciNet  Google Scholar 

  11. Toma, C.: The use of the cuadridimensional interval - the main possibility for improving the Lorentz formulae interpretation. In: Proceedings of ECIT 1997 Symposium - Pitesti (Romania), vol. 2, pp. 202–206 (1997)

    Google Scholar 

  12. Cattani, C.: Multiscale Analysis of Wave Propagation in Composite Materials. Mathematical Modelling and Analysis 8(4), 267–282 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Sterian, P., Toma, C.: Methods for presenting key concepts in physics for MS students by Photon-MD program. Bulgarian Journal of Physics 27(4), 27–30 (2000)

    Google Scholar 

  14. Cattani, C.: Harmonic Wavelet Solutions of the Schroedinger Equation. International Journal of Fluid Mechanics Research 5, 1–10 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Morarescu, C. (2006). Inner Potential of Generating Pulses as a Consequence of Recurrent Principles and Specific Computing Architecture. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3980. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751540_88

Download citation

  • DOI: https://doi.org/10.1007/11751540_88

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34070-6

  • Online ISBN: 978-3-540-34071-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics