Abstract
Efficient buffer management is closely related to system performance. Thus, much research has been performed on various buffer management techniques. However, many of the proposed techniques utilize the temporal locality of access patterns. In spatial database environments, there exists not only the temporal locality but also spatial locality, where the objects in the recently accessed regions will be accessed again in the near future. Thus, in this paper, we present a buffer management technique, called BEAST, which utilizes both the temporal locality and spatial locality in spatial database environments. The experimental results with real-life and synthetic data demonstrate the efficiency of BEAST.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brinkhoff, T., Kriegel, H., Scheneider, R., Seeger, B.: The R*-tree: An Efficient and Robust Access Method for Points and Rectangles. In: Proceedings of ACM SIGMOD Conference, pp. 322–331 (1990)
Min, J.-K., Park, H.-H., Chung, C.-W.: Multi-way spatial join selectivity for the ring join graph. Information and Software Technology 47(12), 785–795 (2005)
Papadias, D., Mamoulis, N., Theodoridis, Y.: Processing and Optimization of Multiway Spatial Join Using R-Tree. In: Proceedings of ACM PODS, pp. 44–55 (1999)
Effelsberg, W.: Principles of Database buffer Management. ACM TODS 9(4), 560–595 (1984)
O’Neil, E.J., Neil, P.E.O., Weikum, G.: The LRU-K Page Replacement algorithm for database disk buffering. In: Proceedings of ACM SIGMOD Conference, pp. 297–306 (1993)
Johnson, T., Shasha, D.: 2Q: a Low Overhead High Performance Buffer Management Replacement Algorithm. In: Proceedings of VLDB Conference, pp. 439–450 (1994)
Tung, A.J., Yay, Y.C., Lu, H.: BLOOM: Buffer Replacement using Online Optimization by Mining. In: Proceedings of CIKM, pp. 185–192 (1998)
Lee, J.C.D., Kim, J.H., Noh, S.H., Min, S.L., Cho, Y., Kim, C.S.: LRFU: A Spectrum of Policies that subsumes the Least Recently Used and Least Frequently Used Policies. IEEE Tans. Computers 50(12), 1352–1360 (2001)
Megiddo, N., Modha, D.S.: ARC: A Self-tuning, Low Overhead Replacement Cache. In: Proceedings of USENIX FAST Conference (2003)
Sokolinsky, L.B.: LFU-K: An Effective Buffer Management Replacement Algorithm. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 670–681. Springer, Heidelberg (2004)
Juurlink, B.: Approximating the Optimal Replacement Algorithm. In: ACM CF Conference (2004)
Sacco, G.M.: Index Access with a Finite Buffer. In: Proceedings of VLDB Conference (1987)
Goh, C.H., Ooi, B.C., Sim, D., Tan, K.: GHOST: Fine Granularity Buffering of Index. In: Proceedings of VLDB Conference (1999)
Papadopoulos, A., Manolopoulos, Y.: Global Page Replacement in Spatial Databases. In: Proceedings of DEXA (1996)
Kamel, I., Faloutsos, C.: On Packing R-Trees. In: Proceedings of CIKM, pp. 490–499 (1993)
Brinkhoff, T.: A Robust and Self-tuning Page Replacement Strategy for Spatial Database Systems. In: Proceedings of DEXA, pp. 533–552 (2002)
Ki-Joune, L., Robert, L.: The Spatial Locality and a Spatial Indexing Method by Dynamic Clustering in Hypermap System. In: Proceedings of SSD, pp. 207–223 (1990)
Bureau, U.C.: UA Census, TIGER/Line Files (2000), http://www.census.gov/geo/www/tiger/tigerua/ua_tgr2k.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Min, JK. (2006). BEAST: A Buffer Replacement Algorithm Using Spatial and Temporal Locality. In: Gavrilova, M.L., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3981. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751588_8
Download citation
DOI: https://doi.org/10.1007/11751588_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34072-0
Online ISBN: 978-3-540-34074-4
eBook Packages: Computer ScienceComputer Science (R0)