Skip to main content

The Maximum Integer Multiterminal Flow Problem

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3982))

Included in the following conference series:

  • 1118 Accesses

Abstract

Given an edge-capacitated graph and kterminal vertices, the maximum integer multiterminal flow problem (MaxIMTF) is to route the maximum number of flow units between the terminals. For directed graphs, we introduce a new parameter k L k and prove that MaxIMTF is \(\mathcal{NP}\)-hard when k = k L = 2 and when k L = 1 and k = 3, and polynomial-time solvable when k L = 0 and when k L = 1 and k = 2. We also give an 2 log2 (k L + 2)-approximation algorithm for the general case. For undirected graphs, we give a family of valid inequalities for MaxIMTF that has several interesting consequences, and show a correspondence with valid inequalities known for MaxIMTF and for the associated minimum multiterminal cut problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, A.K., Magnanti, T.L., Orlin, J.B.: Network Flows – Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Andrews, M., Zhang, L.: Hardness of the undirected edge-disjoint paths problem. In: Proceedings STOC 2005, pp. 276–283 (2005)

    Google Scholar 

  3. Bertsimas, D., Teo, C.-P., Vohra, R.: Analysis of LP relaxations for multiway and multicut problems. Networks 34, 102–114 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Billionnet, A., Costa, M.-C.: Multiway cut and integer flow problems in trees. In: Liberti, L., Maffioli, F. (eds.) CTW 2004 Workshop on Graphs and Combinatorial Optimization. Electronic Notes in Discrete Mathematics, vol. 17, pp. 105–109 (2004)

    Google Scholar 

  5. Cǎlinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for Multiway Cut. In: Proceedings STOC 1998, pp. 48–52 (1998)

    Google Scholar 

  6. Chen, D.Z., Wu, X.: Efficient algorithms for k-terminal cuts on planar graphs. Algorithmica 38, 299–316 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chopra, S., Rao, M.R.: On the multiway cut polyhedron. Networks 21, 51–89 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  8. Costa, M.-C., Létocart, L., Roupin, F.: Minimal multicut and maximal integer multiflow: a survey. European Journal of Operational Research 162, 55–69 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal On Computing 23, 864–894 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  10. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing 5, 691–703 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ford, L.R., Fulkerson, D.R.: Maximal Flow Through a Network. Canadian Journal of Mathematics 8, 339–404 (1956)

    Article  MathSciNet  Google Scholar 

  12. Frank, A., Karzanov, A., Sebö, A.: On integer multiflow maximization. SIAM J. Discrete Mathematics 10, 158–170 (1997)

    Article  MATH  Google Scholar 

  13. Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in directed and node weighted graphs. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 487–498. Springer, Heidelberg (1994)

    Google Scholar 

  14. Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems. In: Proceedings STOC 1999, pp. 19–28 (1999)

    Google Scholar 

  16. Karger, D., Klein, P., Stein, C., Thorup, M., Young, N.: Rounding Algorithms for a Geometric Embedding of Minimum Multiway Cut. In: Proceedings STOC 1999, pp. 668–678 (1999)

    Google Scholar 

  17. Keijsper, J.C.M., Pendavingh, R.A., Stougie, L.: A linear programming formulation of Mader’s edge-disjoint paths problem. Journal of Combinatorial Theory, Series B 96, 159–163 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  18. Naor, J., Zosin, L.: A 2-approximation algorithm for the directed multiway cut problem. In: Proceedings FOCS 1997, pp. 548–553 (1997)

    Google Scholar 

  19. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Heidelberg (2003)

    Google Scholar 

  20. Yeh, W.-C.: A Simple Algorithm for the Planar Multiway Cut Problem. Journal of Algorithms 39, 68–77 (2001)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bentz, C. (2006). The Maximum Integer Multiterminal Flow Problem. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751595_78

Download citation

  • DOI: https://doi.org/10.1007/11751595_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34075-1

  • Online ISBN: 978-3-540-34076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics