Abstract
Given an edge-capacitated graph and kterminal vertices, the maximum integer multiterminal flow problem (MaxIMTF) is to route the maximum number of flow units between the terminals. For directed graphs, we introduce a new parameter k L ≤ k and prove that MaxIMTF is \(\mathcal{NP}\)-hard when k = k L = 2 and when k L = 1 and k = 3, and polynomial-time solvable when k L = 0 and when k L = 1 and k = 2. We also give an 2 log2 (k L + 2)-approximation algorithm for the general case. For undirected graphs, we give a family of valid inequalities for MaxIMTF that has several interesting consequences, and show a correspondence with valid inequalities known for MaxIMTF and for the associated minimum multiterminal cut problem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahuja, A.K., Magnanti, T.L., Orlin, J.B.: Network Flows – Theory, Algorithms, and Applications. Prentice Hall, Englewood Cliffs (1993)
Andrews, M., Zhang, L.: Hardness of the undirected edge-disjoint paths problem. In: Proceedings STOC 2005, pp. 276–283 (2005)
Bertsimas, D., Teo, C.-P., Vohra, R.: Analysis of LP relaxations for multiway and multicut problems. Networks 34, 102–114 (1999)
Billionnet, A., Costa, M.-C.: Multiway cut and integer flow problems in trees. In: Liberti, L., Maffioli, F. (eds.) CTW 2004 Workshop on Graphs and Combinatorial Optimization. Electronic Notes in Discrete Mathematics, vol. 17, pp. 105–109 (2004)
Cǎlinescu, G., Karloff, H., Rabani, Y.: An improved approximation algorithm for Multiway Cut. In: Proceedings STOC 1998, pp. 48–52 (1998)
Chen, D.Z., Wu, X.: Efficient algorithms for k-terminal cuts on planar graphs. Algorithmica 38, 299–316 (2004)
Chopra, S., Rao, M.R.: On the multiway cut polyhedron. Networks 21, 51–89 (1991)
Costa, M.-C., Létocart, L., Roupin, F.: Minimal multicut and maximal integer multiflow: a survey. European Journal of Operational Research 162, 55–69 (2005)
Dahlhaus, E., Johnson, D.S., Papadimitriou, C.H., Seymour, P.D., Yannakakis, M.: The complexity of multiterminal cuts. SIAM Journal On Computing 23, 864–894 (1994)
Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing 5, 691–703 (1976)
Ford, L.R., Fulkerson, D.R.: Maximal Flow Through a Network. Canadian Journal of Mathematics 8, 339–404 (1956)
Frank, A., Karzanov, A., Sebö, A.: On integer multiflow maximization. SIAM J. Discrete Mathematics 10, 158–170 (1997)
Garg, N., Vazirani, V.V., Yannakakis, M.: Multiway cuts in directed and node weighted graphs. In: Shamir, E., Abiteboul, S. (eds.) ICALP 1994. LNCS, vol. 820, pp. 487–498. Springer, Heidelberg (1994)
Garg, N., Vazirani, V.V., Yannakakis, M.: Primal-dual approximation algorithms for integral flow and multicut in trees. Algorithmica 18, 3–20 (1997)
Guruswami, V., Khanna, S., Rajaraman, R., Shepherd, B., Yannakakis, M.: Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related problems. In: Proceedings STOC 1999, pp. 19–28 (1999)
Karger, D., Klein, P., Stein, C., Thorup, M., Young, N.: Rounding Algorithms for a Geometric Embedding of Minimum Multiway Cut. In: Proceedings STOC 1999, pp. 668–678 (1999)
Keijsper, J.C.M., Pendavingh, R.A., Stougie, L.: A linear programming formulation of Mader’s edge-disjoint paths problem. Journal of Combinatorial Theory, Series B 96, 159–163 (2006)
Naor, J., Zosin, L.: A 2-approximation algorithm for the directed multiway cut problem. In: Proceedings FOCS 1997, pp. 548–553 (1997)
Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Heidelberg (2003)
Yeh, W.-C.: A Simple Algorithm for the Planar Multiway Cut Problem. Journal of Algorithms 39, 68–77 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bentz, C. (2006). The Maximum Integer Multiterminal Flow Problem. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751595_78
Download citation
DOI: https://doi.org/10.1007/11751595_78
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34075-1
Online ISBN: 978-3-540-34076-8
eBook Packages: Computer ScienceComputer Science (R0)