Skip to main content

Multivariate Convex Approximation and Least-Norm Convex Data-Smoothing

  • Conference paper
Computational Science and Its Applications - ICCSA 2006 (ICCSA 2006)

Abstract

The main contents of this paper is two-fold. First, we present a method to approximate multivariate convex functions by piecewise linear upper and lower bounds. We consider a method that is based on function evaluations only. However, to use this method, the data have to be convex. Unfortunately, even if the underlying function is convex, this is not always the case due to (numerical) errors. Therefore, secondly, we present a multivariate data-smoothing method that smooths nonconvex data. We consider both the case that we have only function evaluations and the case that we also have derivative information. Furthermore, we show that our methods are polynomial time methods. We illustrate this methodology by applying it to some examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kuijt, F.: Convexity preserving interpolation – Stationary nonlinear subdivision and splines. PhD thesis, University of Twente, Enschede, The Netherlands (1998)

    Google Scholar 

  2. Siem, A.Y.D., de Klerk, E., den Hertog, D.: Discrete least-norm approximation by nonnegative (trigonometric) polynomials and rational functions. CentER Discussion Paper 2005-73, Tilburg University, Tilburg (2005)

    Google Scholar 

  3. den Hertog, D., de Klerk, E., Roos, K.: On convex quadratic approximation. Statistica Neerlandica 563, 376–385 (2002)

    Article  Google Scholar 

  4. Burkard, R.E., Hamacher, H.W., Rote, G.: Sandwich approximation of univariate convex functions with an application to separable convex programming. Naval Research Logistics 38, 911–924 (1991)

    MATH  MathSciNet  Google Scholar 

  5. Fruhwirth, B., Burkard, R.E., Rote, G.: Approximation of convex curves with application to the bi-criteria minimum cost flow problem. European Journal of Operational Research 42, 326–338 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  6. Rote, G.: The convergence rate of the Sandwich algorithm for approximating convex functions. Computing 48, 337–361 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Siem, A.Y.D., den Hertog, D., Hoffmann, A.L.: A method for approximating univariate convex functions using only function evaluations. Working paper, Tilburg University, Tilburg (2005)

    Google Scholar 

  8. Yang, X.Q., Goh, C.J.: A method for convex curve approximation. European Journal of Operational Research 97, 205–212 (1997)

    Article  MATH  Google Scholar 

  9. Cullinan, M.P.: Data smoothing using non-negative divided differences and â„“2 approximation. IMA Journal of Numerical Analysis 10, 583–608 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  10. Demetriou, I.C., Powell, M.J.D.: Least squares smoothing of univariate data to achieve piecewise monotonicity. IMA Journal of Numerical Analysis 11, 411–432 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Demetriou, I.C., Powell, M.J.D.: The minimum sum of squares change to univariate data that gives convexity. IMA Journal of Numerical Analysis 11, 433–448 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  12. Barlow, R.E., Bartholomew, R.J., Bremner, J.M., Brunk, H.D.: Statistical inference under order restrictions. Wiley, Chichester (1972)

    MATH  Google Scholar 

  13. Ben-Tal, A., Nemirovski, A.: Robust optimization - methodology and applications. Mathematical Programming, Series B 92, 453–480 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Charnes, A., Cooper, W.W.: Programming with linear fractional functional. Naval Research Logistics Quarterly 9, 181–186 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  15. Boyd, S., Vandenberghe, L.: Convex optimization. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  16. Hoffmann, A.L., Siem, A.Y.D., den Hertog, D., Kaanders, J.H.A.M., Huizenga, H.: Dynamic generation and interpolation of pareto optimal IMRT treatment plans for convex objective functions. Working paper, Radboud University Nijmegen Medical Centre, Nijmegen (2005)

    Google Scholar 

  17. den Boef, E., den Hertog, D.: Efficient line searching for convex functions. CentER Discussion Paper 2004-52. Tilburg University, Tilburg (2004)

    Google Scholar 

  18. Chinneck, J.W.: Discovering the characteristics of mathematical programs via sampling. Optimization Methods and Software 17(2), 319–352 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Siem, A.Y.D., den Hertog, D., Hoffmann, A.L. (2006). Multivariate Convex Approximation and Least-Norm Convex Data-Smoothing. In: Gavrilova, M., et al. Computational Science and Its Applications - ICCSA 2006. ICCSA 2006. Lecture Notes in Computer Science, vol 3982. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751595_86

Download citation

  • DOI: https://doi.org/10.1007/11751595_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34075-1

  • Online ISBN: 978-3-540-34076-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics