Abstract
An implementation of a computational tool to generate new summaries from new source texts in Portuguese language, by means of connectionist approach (artificial neural networks) is presented. Among other contributions that this work intends to bring to natural language processing research, the employment of more biologically plausible connectionist architecture and training for automatic summarization is emphasized. The choice relies on the expectation that it may lead to an increase in computational efficiency when compared to the so-called biologically implausible algorithms.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Mani, I., Maybury, M.T.: Advances in Automatic Text Summarization. MIT Press, Cambridge (1999)
Mani, I.: Automatic Summarization. John Benjamins Pub., Amsterdam (2001)
Aretoulaki, M.: COSY-MATS: A Hybrid Connectionist-Symbolic Approach to the Pragmatic Analysis of Texts for Their Automatic Summarisation. PhD thesis, Univ. of Manchester (1996)
Haykin, S.: Neural Networks: A Comprehensive Foundation, 2nd edn. Prentice Hall, Upper Saddle River (1999)
Pardo, T.A.S., Rino, L.H.M., Nunes, M.G.V.: NeuralSumm: Uma Abordagem Conexionista para a Sumarizacão Automática de Textos. In: Anais do IV (ed.) Encontro Nacional de Inteligência Artificial - ENIA 2003, Campinas, São Paulo, Brazil, vol. 1, pp. 1–10 (2003)
Pardo, T.A.S., Rino, L.H.M., Nunes, M.G.V.: GistSumm: A Summarization Tool Based on a New Extractive Method. In: 6th Workshop on Computational Processing of the Portuguese Language, vol. 6, pp. 210–218 (2002)
van Rijsbergen, C.J.: Information Retrieval, 2nd edn., Butterworth, London (1979)
O’Reilly, R.C., Munakata, Y.: Computational Explorations in Cognitive Neuroscience - Understanding the Mind by Simulating the Brain. A Bradford Book, The MIT Press, Cambridge (2000)
Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Essential of Neural Science and Behavior. Appleton and ange, Stanford, Connecticut, USA (1995)
Rosa, J.L.G.: A Biologically Inspired Connectionist System for Natural Language Processing. In: Proc. of the 2002 VII Brazilian Symposium on Neural Networks - SBRN 2002, Recife, Brazil, pp. 243–248. IEEE Computer Society Press, Los Alamitos (2002)
O’Reilly, R.C.: Biologically Plausible Error-driven Learning using Local Activation Differences: The Generalized Recirculation Algorithm. Neural Computation 8(5), 895–938 (1996)
Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning Internal Representations by Error Propagation. In: Rumelhart, D.E., McClelland, J.L. (eds.) Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1, pp. 318–362. A Bradford Book, MIT Press (1986)
Pardo, T.A.S., Rino, L.H.M.: TeMário: Um Corpus para Sumarizacão Automática de Textos. Technical report, NILCTR-03-09 - ICMC-USP, São Carlos, São Paulo, Brazil (2003)
Salton, G.: Automatic Text Processing - The Transformation, Analysis, and Retrieval of Information by Computer. Addison-Wesley, Reading (1989)
Witten, I.H., Moffat, A., Bell, T.C.: Managing Gigabytes. Van Nostrand Reinhold, New York (1994)
Kupiec, J., Pedersen, J., Chen, F.: A Trainable Document Summarizer. ACM SIGIR 1, 68–73 (1995)
Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing. In: Computational Linguistics, and Speech Recognition, Prentice Hall, Englewood Cliffs (2000)
Baxendale, P.B.: Machine-Made Index for Technical Literature: An Experiment. IBM Journal of Research and Development 2, 354–365 (1958)
Black, W.J., Johnson, F.C.: A Practical Evaluation of Two Rule-Based Automatic Abstraction Techniques. Expert Systems for Information Management 1(3), 159–177 (1988)
Larocca, J.N., Santos, A.D., Kaestner, C.A.A., Freitas, A.A.: Generating Text Summaries through the Relative Importance of Topics. In: Monard, M.C., Sichman, J.S. (eds.) SBIA 2000 and IBERAMIA 2000. LNCS (LNAI), vol. 1952, pp. 301–309. Springer, Heidelberg (2000)
Paice, C.D.: The Automatic Generation of Literature Abstracts: An Approach Based on the Identification of Self-indicating Phrases. In: Proc. of the 3rd annual ACM Conf. on Research and Development in Information Retrieval, Cambridge, England, Butterworth, pp. 172–191 (1981)
Rino, L.H.M., Pardo, T.A.S.: A Comparison of Automatic Summarization Systems for Brazilian Portuguese Texts. In: Proc. of the XVII Brazilian Symposium on Artificial Intelligence - SBIA 2004, São Luís, Maranhão, Brazil, pp. 235–244 (2004)
Modolo, M.: SUPOR: Um Ambiente para a Exploracão de Métodos Extrativos para a Sumarizacão Automática de Textos em Português. PhD thesis, Computing Department - UFSCar, São Carlos, São Paulo, Brazil (2003)
Larocca, J.N., Freitas, A.A., Kaestner, C.A.A.: Automatic Text Summarization Using a Machine Learning Approach. In: Proc. of the 16th Brazilian Symposium on Artificial Intelligence, Porto de Galinhas, Pernambuco, Brazil, pp. 205–215 (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Orrú, T., Rosa, J.L.G., de Andrade Netto, M.L. (2006). SABio: An Automatic Portuguese Text Summarizer Through Artificial Neural Networks in a More Biologically Plausible Model. In: Vieira, R., Quaresma, P., Nunes, M.d.G.V., Mamede, N.J., Oliveira, C., Dias, M.C. (eds) Computational Processing of the Portuguese Language. PROPOR 2006. Lecture Notes in Computer Science(), vol 3960. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11751984_2
Download citation
DOI: https://doi.org/10.1007/11751984_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34045-4
Online ISBN: 978-3-540-34046-1
eBook Packages: Computer ScienceComputer Science (R0)