Abstract
Classification deals with discovery of a predictive learning function that classifies a data object into one of several predefined classes. We present a novel decision-tree-based classification service which can be used either autonomously or as a building block to construct distributed and scalable classifiers that operate on data repositories integrated into the Grid that typically involve large, complex, heterogeneous, and geographically distributed datasets. Although classification is considered as a well-studied problem – a lot of classification methods were proposed for sequential, parallel and distributed environments, so far, to our best knowledge, no effort was devoted to building classifiers based on federation of Grid resources. The Grid service described in this paper was fully implemented and integrated into the GridMiner framework (www.gridminer.org). Scalability and performance of the prototype implementation have been examined and the results are presented.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Brezany, P., Kloner, C.: Programming the decision tree service within the grid data mining framework gridminer-core. Technical Report GridMiner TR 2004-05, University of Vienna Austria (September 2004)
Brezany, P., Min Tjoa, A., Rusnak, M., Janciak, I.: Knowledge grid support for treatment of traumatic brain injury victims. In: International Conference on Computational Science and Its Applications, Montreal, Canada (May 2003)
Hofer, J., Brezany, P.: Distributed decision tree induction within the grid data mining framework gridminer-core. Technical Report GridMiner TR 2004-04, University of Vienna, Vienna, Austria (March 2004)
Mehta, M., Agrawal, R., Rissanen, J.: SLIQ: A fast scalable classifier for data mining. In: Extending Database Technology, pp. 18–32 (1996)
Quinlan, J.R.: Induction on decision trees. Machine Learning 1, 81–106 (1986)
Quinlan, J.R.: Simplifying decision trees. International Journal of Man-Machine Studies 27, 221–234 (1987)
Shafer, J.C., Agrawal, R., Mehta, M.: SPRINT: A scalable parallel classifier for data mining. In: Vijayaraman, T.M., Buchmann, A.P., Mohan, C., Sarda, N.L. (eds.) Proc. 22nd Int. Conf. Very Large Databases, VLDB, 3–6, pp. 544–555. Morgan Kaufmann, San Francisco (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Brezany, P., Kloner, C., Tjoa, A.M. (2006). Development of a Grid Service for Scalable Decision Tree Construction from Grid Databases. In: Wyrzykowski, R., Dongarra, J., Meyer, N., Waśniewski, J. (eds) Parallel Processing and Applied Mathematics. PPAM 2005. Lecture Notes in Computer Science, vol 3911. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11752578_74
Download citation
DOI: https://doi.org/10.1007/11752578_74
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34141-3
Online ISBN: 978-3-540-34142-0
eBook Packages: Computer ScienceComputer Science (R0)