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Abstract. This article presents a unified theory for analysis of compo-
nents in discrete data, and compares the methods with techniques such as
independent component analysis, non-negative matrix factorisation and
latent Dirichlet allocation. The main families of algorithms discussed
are a variational approximation, Gibbs sampling, and Rao-Blackwellised
Gibbs sampling. Applications are presented for voting records from the
United States Senate for 2003, and for the Reuters-21578 newswire col-
lection.

1 Introduction

Principal component analysis (PCA) [MKB79] is a key method in the statistical
engineering toolbox. It is well over a century old, and is used in many different
ways. PCA is also known as the Karhünen-Loève transform or Hotelling trans-
form in image analysis, and a variation is latent semantic analysis (LSA) in text
analysis [DDL+90]. It is a kind of eigen-analysis since it manipulates the eigen-
spectrum of the data matrix. It is usually applied to measurements and real
valued data, and used for feature extraction or data summarization. LSA might
not perform the centering step (subtracting the mean from each data vector
prior to eigen-analysis) on the word counts for a document to preserve matrix
sparseness, or might convert the word counts to real-valued tf*idf [BYRN99].
The general approach here is data reduction.

Independent component analysis (ICA, see [HKO01]) is in some ways an
extension of this general approach, however it also involves the estimation of
so-called latent, unobservable variables. This kind of estimation follows the ma-
jor statistical methodology that deals with general unsupervised methods such
as clustering and factor analysis. The general approach is called latent structure

analysis [Tit], which is more recent, perhaps half a century old. The data is mod-
elled in a way that admits unobservable variables, that influence the observable
variables. Statistical inference is used to “reconstruct” the unobservable variables
from the data jointly with general characteristics of the unobservable variables



themselves. This is a theory with particular assumptions (i.e., a “model”), so
the method may arrive at poor results.

Relatively recently the statistical computing and machine learning commu-
nity has become aware of seemingly similar approaches for discrete observed data
that appears under many names. The best known of these in this community are
probabilistic latent semantic indexing (PLSI) [Hof99], non-negative matrix fac-
torisation (NMF) [LS99] and latent Dirichlet allocation (LDA) [BNJ03]. Other
variations are discussed later in Section 5. We refer to these methods jointly as
Discrete Component Analysis (DCA), and this article provides a unifying model
for them.

All the above approaches assume that the data is formed from individual ob-
servations (documents, individuals, images), where each observation is described
through a number of variables (words, genes, pixels). All these approaches at-
tempt to summarize or explain the similarities between observations and the
correlations between variables by inferring latent variables for each observation,
and associating latent variables with observed variables.

These methods are applied in the social sciences, demographics and med-
ical informatics, genotype inference, text and image analysis, and information
retrieval. By far the largest body of applied work in this area (using citation in-
dexes) is in genotype inference due to the Structure program [PSD00]. A growing
body of work is in text classification and topic modelling (see [GS04, BPT04]),
and language modelling in information retrieval (see [AGvR03, BJ04, Can04]).
As a guide, argued in the next section, the methods apply when PCA or ICA
might be used, but the data is discrete.

Here we present in Section 3 a unified theory for analysis of components in
discrete data, and compare the methods with related techniques in Section 5.
The main families of algorithms discussed in Section 7 are a variational approx-
imation, Gibbs sampling, and Rao-Blackwellised Gibbs sampling. Applications
are presented in Section 8 for voting records from the United States Senate for
2003, and the use of components in subsequent classification.

2 Views of DCA

One interpretation of the DCA methods is that they are a way of approximating
large sparse discrete matrices. Suppose we have a 500, 000 documents made up
of 1, 500, 000 different words. A document such as a page out of Dr. Seuss’s The

Cat in The Hat, is first given as a sequence of words.

So, as fast as I could, I went after my net. And I said, “With my net I
can bet them I bet, I bet, with my net, I can get those Things yet!”

It can be put in the bag of words representation, where word order is lost. This
yields a list of words and their counts in brackets:

after(1) and(1) as(2) bet(3) can(2) could(1) fast(1) get(1) I(7) my(3)
net(3) said(1) so(1) them(1) things(1) those(1) went(1) with(2) yet(1) .



Although the word ‘you’ never appears in the original, we do not include ‘you
(0)’ in the representation since zeros are suppressed. This sparse vector can be
represented as a vector in full word space with 1, 499, 981 zeroes and the counts
above making the non-zero entries in the appropriate places. Given a matrix
made up of rows of such vectors of non-negative integers dominated by zeros, it
is called here a large sparse discrete matrix.

Bag of words is a basic representation in information retrieval [BYRN99].
The alternative is a sequence of words. In DCA, either representation can be
used and the models act the same, up to any word order effects introduced by
incremental algorithms. This detail is made precise in subsequent sections.

In this section, we argue from various perspectives that large sparse discrete
data is not well suited to standard PCA or ICA methods.

2.1 Issues with PCA

PCA has been normally applied to numerical data, where individual instances are
vectors of real numbers. However, many practical datasets are based on vectors of
integers, non-negative counts or binary values. For example, a particular word
cannot have a negative number of appearances in a document. The vote of a
senator can only take three values: Yea, Nay or Not Voting. We can transform
all these variables into real numbers using tf*idf, but this is a linear weighting
that does not affect the shape of a distribution.

With respect to modelling count data in linguistic applications, Dunning
makes the following warning [Dun94]:

Statistics based on the assumption of normal distribution are invalid in
most cases of statistical text analysis unless either enormous corpora are
used, or the analysis is restricted to only the very most common words
(that is, the ones least likely to be of interest). This fact is typically ig-
nored in much of the work in this field. Using such invalid methods may
seriously overestimate the significance of relatively rare events. Paramet-
ric statistical analysis based on the binomial or multinomial distribution
extends the applicability of statistical methods to much smaller texts
than models using normal distributions and shows good promise in early
applications of the method.

While PCA is not always considered a method based on Gaussians, it can be
justified using Gaussian distributions [Row98, TB99]. Moreover, PCA is justified
using a least squares distance measure, and most of the properties of Gaussians
follow from the distance measure alone. Rare events correspond to points far
away under an L2 norm.

Fundamentally, there are two different kinds of large sample approximating
distributions that dominate discrete statistics: the Poisson and the Gaussian.
For instance, a large sample binomial is approximated as a Poisson3 when the

3 This is a distribution on integers where a rate is given for events to occur, and the
distribution is over the total number of events counted.



probability is small and as a Gaussian otherwise [Ros89]. Figure 2.1 illustrates
this by showing the Gaussian and Poisson approximations to a binomial with
sample size N = 100 for different proportions (p = 0.03, 0.01, 0.03). Plots are
done with probability in log scale so the errors for low probability values are
highlighted. One can clearly see the problem here: the Gaussian provides a rea-
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sonable approximate for medium values of the proportion p but for small values
it severely underestimates low probabilities. When these low probability events
occur, as they always will, the model becomes distorted.

Thus in image analysis based on analogue to digital converters, where data
is counts, Gaussian errors can sometimes be assumed, but the Poisson should
be used if counts are small. DCA then avoids Gaussian modelling of the data,
using a Poisson or multinomial directly.

Another critique of the general style of PCA comes from the psychology
literature, this time it is used as a justification for DCA [GS02]. Griffiths and
Steyvers argue against the least squares distance of PCA:

While the methods behind LSA were novel in scale and subject, the
suggestion that similarity relates to distance in psychological space has
a long history (Shepard, 1957). Critics have argued that human similarity
judgments do not satisfy the properties of Euclidean distances, such
as symmetry or the triangle inequality. Tversky and Hutchinson (1986)
pointed out that Euclidean geometry places strong constraints on the
number of points to which a particular point can be the nearest neighbor,
and that many sets of stimuli violate these constraints.



They also considered power law arguments which PCA violates for associated
words.

2.2 Component Analysis as Approximation

In the data reduction approach for PCA, one seeks to reduce each J-dimensional
data vector to a smaller K-dimensional vector. This can be done by approximat-
ing the full data matrix as a product of smaller matrices, one representing the
reduced vectors called the component/factor score matrix, and one representing
a data independent part called the component/factor loading matrix, as shown in
Figure 1. In PCA according to least squares theory, this approximation is made
by eliminating the lower-order eigenvectors, the least contributing components
[MKB79].
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Fig. 1. The matrix approximation view

If there are I documents, J words and K components, then the matrix on the
left has I ∗ J entries and the two matrices on the right have (I + J) ∗K entries.
This represents a simplification when K ¿ I, J . We can view DCA methods as
seeking the same goal in the case where the matrices are sparse and discrete.

When applying PCA to large sparse discrete matrices, or LSA using word
count data interpretation of the components, if it is desired, becomes difficult
(it was not a goal of the original method [DDL+90]). Negative values appear in
the component matrices, so they cannot be interpreted as “typical documents”
in any usual sense. This applies to many other kinds of sparse discrete data:
low intensity images (such as astronomical images) and verb-noun data used in
language models introduced by [PTL93], for instance.

The cost function being minimized then plays an important role. DCA places
constraints on the approximating score matrix and loading matrix in Figure 1
so that they are also non-negative. It also uses an entropy distance instead of a
least squares distance.



2.3 Independent Components

Independent component analysis (ICA) was also developed as an alternative to
PCA. Hyvänen and Oja [HO00] argue that PCA methods merely find uncorre-
lated components. ICA then was developed as a way of representing multivariate
data with truly independent components. In theory, PCA approximates this also
if the data is Gaussian [TB99], but in practice it rarely is.

The basic formulation is that a K-dimensional data vector w is a linear
invertible function ofK independent components represented as aK-dimensional
latent vector l, w = Θl for a square invertible matrix Θ. Note the ICA assumes
J = K in our notation. Θ plays the same role as the loading matrix above. For
some univariate density model U, the independent components are distributed as
p(l |U) =

∏

k p(lk |U), thus one can get a likelihood formula p(w |Θ, U) using
the above equality4.

The Fast ICA algorithm [HO00] can be interpreted as a maximum likelihood
approach based on this model and likelihood formula. In the sparse discrete
case, however, this formulation breaks down for the simple reason that w is
mostly zeros: the equation can only hold if l and Θ are discrete as well and thus
the gradient-based algorithms for ICA cannot be justified. To get around this in
practice, when applying ICA to documents [BKG03], word counts are sometimes
first turned into tf*idf scores [BYRN99].

To arrive at a formulation more suited to discrete data, we can relax the
equality in ICA (i.e., w = Θl) to be an expectation:

Ew∼p(w|l,U) [w] = Θl .

We still have independent components, but a more robust relationship between
the data and the score vector. Correspondence between ICA and DCA has been
noted in [BJ04, Can04]. With this expectation relationship, the dimension of
l can now be less than the dimension of w, K < J , and thus Θ would be a
rectangular matrix.

3 The Basic Model

A good introduction to these models from a number of viewpoints is by [BNJ03,
Can04, BJ04]. Here we present a general model. The notation of words, bags
and documents will be used throughout, even though other kinds of data repre-
sentations also apply. In statistical terminology, a word is an observed variable,
and a document is a data vector (a list of observed variables) representing an
instance. In machine learning terminology, a word is a feature, a bag is a data
vector, and a document is an instance. Notice that the bag collects the words in

4 By a change of coordinates

p(w |Θ, U) =
1

det(Θ)
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the document and loses their ordering. The bag is represented as a data vector
w. It is now J-dimensional. The latent, hidden or unobserved vector l called the
component scores is K-dimensional. The term component is used here instead
of topic, factor or cluster. The parameter matrix is the previously mentioned
component loading matrix Θ, and is J ×K.

At this point, it is also convenient to introduce the symbology used through-
out the paper. The symbols summarised in Table 1 will be introduced as we go.

I number of documents
(i) subscript to indicate document, sometimes dropped
J number of different words, size of the dictionary
K number of components
L(i) number of words in document i
S number of words in the collection,

P

i
L(i)

w(i) vector of J word counts in document i, row totals of V , entries wj,(i)

c(i) vector of K component counts for document i, column totals of V
V matrix of word counts per component, dimension J ×K, entries vj,k

l(i) vector of K component scores for document i, entries lk,(i)

m(i) l(i) normalised, entries mk,(i)

k(i) vector of L(i) sequential component assignments for the words in
document i, entries kl,(i) ∈ [1, . . . ,K]

Θ component loading matrix, dimension J ×K, entries θj,k

θ
·,k component loading vector for component k, a column of Θ
α,β K-dimensional parameter vectors for component priors

Table 1. Summary of major symbols

3.1 Bags or Sequences of Words?

For a document x represented as a sequence of words, if w = bag(x) is its
bagged form, the bag of words, represented as a vector of counts. In the simplest
case, one can use a multinomial with sample size L = |x| and vocabulary size
J = |w| to model the bag, or alternatively L independent discrete distributions5

with J outcomes to model each xl. The bag w corresponds to the sequence x

with the order lost, thus there are
(

P

j
wj)!

Q

j
wj !

different sequences that map to the

same bag w. The likelihoods for these two simple models thus differ by just this
combinatoric term.

Note that some likelihood based methods such as maximum likelihood, some
Bayesian methods, and some other fitting methods (for instance, a cross valida-
tion technique) use the likelihood as a black-box function. They take values or

5 The discrete distribution is the multivariate form of a Bernoulli where an index
j ∈ {0, 1, ..., J − 1} is sampled according to a J-dimensional probability vector.



derivatives but otherwise do not further interact with the likelihood. The combi-
natoric term mapping bag to sequence representations can be ignored here safely
because it does not affect the fitting of the parameters for M. Thus for these
methods, it is irrelevant whether the data is treated as a bag or as a sequence.
This is a general property of multinomial data.

Thus, while we consider bag of words in this article, most of the theory
applies equally to the sequence of words representation6. Implementation can
easily address both cases with little change to the algorithms, just to the data
handling routines.

3.2 General DCA

The general formulation introduced in Section 2.3 is an unsupervised version of
a linear model, and it applies to the bag of words w as

Ew∼p(w|l,Θ) [w] = Θl (1)

The expected value (or mean) of the data is given by the dot product of the
component loading matrix Θ and some latent component scores l.

In full probability (or Bayesian) modelling [GCSR95], we are required to
give a distribution for all the non-deterministic values in a model, including
model parameters and the latent variables. In likelihood modelling [CB90], we
are required to give a distribution for all the data values in a model, including
observed and latent variables. These are the core methodologies in computational
statistics, and most others extend these two. The distribution for the data is
called a likelihood in both methodologies.

The likelihood of a document is the primary way of evaluating a probabilistic
model. Although likelihood is not strictly a probability in classical statistics, we
can interpret them as a probability that a probabilistic model M would gener-
ate a document x, P (x|M). On the other hand, it is also a way of determining
whether the document is usual or unusual: documents with low likelihood are
often considered to be outliers or anomalies. If we trust our documents, low like-
lihoods indicate problems with the model. If we trust out model, a low likelihood
indicates problems with a document.

Thus to complete the above formulation for DCA, we need to give distribu-
tions matching the constraint in Equation (1), to specify the likelihood. Distri-
butions are needed for:

– how the sequence x or bag w is distributed given its mean Θl formed from
the component loading matrix,

6 Some advanced fitting methods such as Gibbs sampling do not treat the likelihood
as a black-box. They introduce latent variables that expands the functional form
of the likelihood, and they may update parts of a document in turn. For these,
ordering effects can be incurred by bagging a document, since updates for different
parts of the data will now be done in a different order. But the combinatoric term
mapping bag to sequence representations will still be ignored and the algorithms are
effectively the same up to the ordering affects.



– how the component scores l are distributed,
– and if full probability modelling is used, how the component loading matrix

Θ is distributed apriori, as well as any parameters.

The formulation of Equation (1) is also called an admixture model in the
statistical literature [PSD00]. This is in contrast with a mixture model [GCSR95]
which uses a related constraint

Ew∼p(w|l) [w] = θ·,k ,

for some latent variable k representing the single latent component for w. Since k
is unobserved, this also corresponds to making a weighted sum of the probability
distributions for each θ·,k.

4 The Model Families

This section introduces some forms of DCA using specific distributions for the
sequence x or bag w and the component scores l. The fundamental model here is
the Gamma-Poisson Model (GP model for short). Other models can be presented
as variations. The probability for a document is given for each model, both for
the case where the latent variables are known (and thus are on the right-hand
side), and for the case where the latent variables are included in the left-hand
side.

4.1 The Gamma-Poisson Model

The general Gamma-Poisson form of DCA, introduced as GaP [Can04] is now
considered in more detail:

– Document data is supplied in the form of word counts. The word count for
each word type is wj . Let L be the total count, so L =

∑

j wj .
– The document also has component scores l that indicate the amount of the

component in the document. These are latent or unobserved. The entries lk
are independent and gamma distributed

lk ∼ Gamma(αk, βk) for k = 1, . . . ,K.

The βk affects scaling of the components7, while αk changes the shape of
the distribution, shown in Figure 2.

– There is a component loading matrix Θ of size J ×K with entries θj,k that
controls the partition of features amongst each component. In the matrix,
each column for component k is normalised across the features, meaning that
∑

j θj,k = 1. Thus each column represents the proportions of words/features
in component k.

7 Conventions for the gamma vary. Sometimes a parameter 1/βk is used. Our conven-
tion is revealed in Equation (2).
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– The observed data w is now Poisson distributed, for each j

wj ∼ Poisson ((Θl)j) .

– The K parameters (αk, βk) to the gamma distributions give K-dimensional
parameter vectors α and β. Initially these vectors will be treated as con-
stants, and their estimation is the subject of later work.

– When using Bayesian of full probability modelling, a prior is needed for Θ.
A Dirichlet prior can be used for each k-th component of Θ with J prior
parameters γj , so θ·,k ∼ DirichletJ(γ). In practice we use a Jeffreys’ prior,
which has γj = 0.5. The use of a Dirichlet has no strong justification other
than being conjugate [GCSR95], but the Jeffreys’ prior has some minimax
properties [CB94] that make it more robust.

The hidden or latent variables here are the component scores l. The model pa-
rameters are the gamma parameters β and α, and the component loading matrix
Θ. Denote the model as GP standing for Gamma-Poisson. The full likelihood
for each document, p(w, l |β,α,Θ,K,GP), is composed of two parts. The first
part comes from K independent gamma distributions for lk, and the second part
comes from J independent Poisson distributions with parameters

∑

k lkθj,k.

likelihood of l likelihood of w given l
︷ ︸︸ ︷

∏

k

βαk

k lαk−1
k exp{−βklk}

Γ (αk)

︷ ︸︸ ︷

∏

j

(
∑

k lkθj,k)
wj exp {− (

∑

k lkθj,k)}

wj !

(2)

4.2 The Conditional Gamma-Poisson Model

In practice, when fitting the parameters α in the GP or DM model, it is often
the case that the αk go very small. Thus, in this situation, perhaps 90% of the



component scores lk are negligible, say less than 10−8 once normalised. Rather
than maintaining these negligible values, we can allow component scores to be
zero with some finite probability. The Conditional Gamma-Poisson Model, de-
noted CGP for short, introduces this capability. In retrospect, CGP is a sparse
GP with an additional parameter per component to encourage sparsity.

The CGP model extends the Gamma-Poisson model by making the lk zero
sometimes. In the general case, the lk are independent and zero with probability
ρk and otherwise gamma distributed with probability 1− ρk.

lk ∼ Gamma(αk, βk) for k = 1, . . . ,K.

Denote the model as CGP standing for Conditional Gamma-Poisson, and the
full likelihood is now p(w, l |β,α,ρ,Θ,K,CGP). The full likelihood for each
document, modifying the above Equation (2), replaces the term inside

∏

k with

(1− ρk)
βαk

k lαk−1
k exp{−βklk}

Γ (αk)
+ ρk1lk=0 (3)

4.3 The Dirichlet-Multinomial Model

The Dirichlet-multinomial form of DCA was introduced as MPCA. In this case,
the normalised latent variables m are used, and the total word count L is not
modelled.

m ∼ DirichletK(α) , w ∼ Multinomial(L,Θm)

The first argument to the multinomial is the total count, the second argument
is the vector of probabilities. Denote the model as DM, and the full likelihood is
now p(w,m |L,α,Θ,K,DM). The full likelihood for each document becomes:

CL
w1,...,wJ

Γ

(
∑

k

αk

)
∏

k

mαk−1
k

Γ (αk)

∏

j

(
∑

k

mkθj,k

)wj

(4)

where CL
w is L choose w1, . . . , wJ . This model can also be derived from the

Gamma-Poisson model, shown in the next section.

4.4 A Multivariate Version

Another variation of the methods is to allow grouping of the count data. Words
can be grouped into separate variable sets. These groups might be “title words,”
“body words,” and “topics” in web page analysis or “nouns,” “verbs” and “ad-
jectives” in text analysis. The groups can be treated with separate discrete dis-
tributions, as below. The J possible word types in a document are partitioned
into G groups B1, . . . , BG. The total word counts for each group g is denoted
Lg =

∑

j∈Bg
wj . If the vector w is split up into G vectors wg = {wj : j ∈ Bg},



and the matrix Θ is now normalised by group in each row, so
∑

j∈Bg
θj,k = 1,

then a multivariate version of DCA is created so that for each group g,

wg ∼ Multinomial

(

Lg,

{
∑

k

mkθj,k : j ∈ Bg

})

.

Fitting and modelling methods for this variation are related to LDA or MPCA,
and will not be considered in more detail here. This has the advantage that dif-
ferent kinds of words have their own multinomial and the distribution of different
kinds is ignored. This version is demonstrated subsequently on US Senate voting
records, where each multinomial is now a single vote for a particular senator.

5 Related Work

These sections begins by relating the main approaches to each other, then placing
them in the context of exponential family models, and finally a brief history is
recounted.

5.1 Correspondences

Various published cases of DCA can be represented in terms of this format, as
given in Table 2. A multinomial with total count L and J possible outcomes is
the bagged version of L discrete distributions with J possible outcomes. In the
table, NA indicates that this aspect of the model was not required to be specified
because the methodology made no use of it. Note that NMF used a cost function

Table 2. Previously Published Models

Name Bagged Components p(x/w |Θ, l) p(l/m)

NMF [LS99] yes l Poisson NA
PLSI [Hof99] no m discrete NA
LDA [BNJ03] no m discrete Dirichlet

MPCA [Bun02] yes m multinomial Dirichlet
GaP [Can04] yes l Poisson gamma

formulation, and thus avoided defining likelihood models. It is shown later that
its cost function corresponds to a Gamma-Poisson with parameters α = β = 0

(i.e., all zero).
LDA has the multinomial of MPCA replaced by a sequence of discrete distri-

butions, and thus the choose term drops, as per Section 3.1. PLSI is related to
LDA but lacks a prior distribution on m. It does not model these latent variables
using full probability theory, but instead using a weighted likelihood method



[Hof99]. Thus PLSI is a non-Bayesian version of LDA, although its weighted
likelihood method means it accounts for over-fitting in a principled manner.

LDA and MPCA also have a close relationship to GaP (called GP here).
If the parameter α is treated as known and not estimated from the data, and
the β parameter vector has the same value for each βk, then L is aposteriori

independent of m and Θ. In this context LDA, MPCA and GaP are equivalent
models ignoring representational issues.

Lemma 1. Given a Gamma-Poisson model of Section 4.1 where the β param-

eter is a constant vector with all entries the same, β, the model is equivalent

to a Dirichlet-multinomial model of Section 4.3 where mk = lk/
∑

k lk, and in

addition

L ∼ Poisson-Gamma

(
∑

k

αk, β, 1

)

Proof. Consider the Gamma-Poisson model. The sum L =
P

j
wj of Poisson variables

w has the distribution of a Poisson with parameter given by the sum of their means.
When the sum of Poisson variables is known, the set of Poisson variables has a multi-
nomial distribution conditioned on the sum (the total count) [Ros89]. The Poisson
distributions on w then is equivalent to:

L ∼ Poisson

 
X

k

lk

!

, w ∼ Multinomial

„

L,
1

P

k
lk
Θl

«

.

Moreover, if the β parameter is constant, then mk = lk/
P

k
lk is distributed as

DirichletK(α), and
P

k
lk is distributed independently as a Gamma(

P

k
αk, β). The

second distribution above can then be represented as

w ∼ Multinomial (L, Θm) .

Note also, that marginalising out
P

k
lk convolves a Poisson and a gamma distribution

to produce a Poisson-Gamma distribution for L [BS94].

If α is estimated from the data in GaP, then the presence of the observed L will
influence α, and thus the other estimates such as of Θ. In this case, LDA and
MPCA will no longer be effectively equivalent to GaP. Note, Canny recommends
fixing α and estimating β from the data [Can04].

To complete the set of correspondences, note that in Section 7.1 it is proven
that NMF corresponds to a maximum likelihood version of GaP, and thus it also
corresponds to a maximum likelihood version of LDA, MPCA, and PLSI.

5.2 Notes on the Exponential Family

For the general DCA model of Section 3.2, when p(w |Θl) is in the so-called
exponential family distributions [GCSR95], the expected value of w is referred
to as the dual parameter, and it is usually the parameter we know best. For the
Bernoulli with probability p, the dual parameter is p, for the Poisson with rate λ,
the dual parameter is λ, and for the Gaussian with mean µ, the dual parameter



is the mean. Our formulation, then, can be also be interpreted as letting w be
exponential family with dual parameter given by (Θl). Our formulation then
generalises PCA in the same way that a linear model [MN89] generalises linear
regression.

Note, an alternative has also been presented [CDS01] where w has an ex-
ponential family distribution with natural parameters given by (Θl). For the
Bernoulli with probability p, the natural parameter is log(p/(1 − p)), for the
Poisson with rate λ, the natural parameter is log λ and for the Gaussian with
mean µ, the natural parameter is the mean. This formulation generalises PCA
in the same way that a generalised linear model [MN89] generalises linear re-
gression.

5.3 Historical notes

Several independent groups within the statistical computing and machine learn-
ing community have contributed to the development of the DCA family of meth-
ods. Some original research includes the following: grade of membership (GOM)
[WM82], probabilistic latent semantic indexing (PLSI) [Hof99], non-negative ma-
trix factorisation (NMF) [LS99], genotype inference using admixtures [PSD00],
latent Dirichlet allocation (LDA) [BNJ03], and Gamma-Poisson models (GaP)
[Can04]. Modifications and algorithms have also been explored as multinomial
PCA (MPCA) [Bun02] and multiple aspect modelling [ML02].

The first clear enunciation of the large-scale model in its Poisson form comes
from [LS99], and in its multinomial form from [Hof99] and [PSD00]. The first
clear expression of the problem as a latent variable problem is given by [PSD00].
The relationship between LDA and PLSI and that NMF was a Poisson version of
LDA was first pointed out by [Bun02], and proven in [GG05]. The connections to
ICA come from [BJ04] and [Can04]. The general Gamma-Poisson formulation,
perhaps the final generalisation to this line of work, is in [Can04].

Related techniques in the statistical community can be traced back to Latent
Class Analysis developed in the 1950’s, and a rich theory has since developed
relating the methods to correspondence analysis and other statistical techniques
[vGv99].

6 Component Assignments for Words

In standard mixture models, each document in a collection is assigned to one
latent component. The DCA family of models can be interpreted as making
each word in each document be assigned to one latent component. To see this,
we introduce another latent vector which represents the component assignments
for different words. As in Section 3.1, this can be done using a bag of components
or a sequence of components representation, and no effective change occurs in
the basic models, or in the algorithms so derived. What this does is expand out
the term Θl into parts, treating it as if it is the result of marginalising out some
latent variable.



We introduce a K-dimensional discrete latent vector c whose total count is
L, the same as the word count. The count ck gives the number of words in the
document appearing in the k-th component. Its posterior mean makes a good
diagnostic and interpretable result. A document from the sports news might
have 50 “football” words, 10 “German” words, 20 “sports fan” words and 20
“general vocabulary” words.

This latent vector is derived from a larger latent matrix, V of size J×K and
entries vj,k. This has row totals wj as given in the observed data and column
totals ck. Vectors w and c are these word appearance counts and component
appearance counts, respectively, based on summing rows and columns of matrix
V . This is shown in Figure 3.
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Fig. 3. A representation of a document as a contingency table.

The introduction of the latent matrix V changes the forms of the likelihoods,
and makes the development and analysis of algorithms easier. This section cat-
alogues the likelihood formula, to be used when discussing algorithms.

6.1 The Gamma-Poisson Model

With the new latent matrix V , the distributions underlying the Gamma-Poisson
model become:

lk ∼ Gamma(αk, βk) (5)

ck ∼ Poisson (lk)

wj =
∑

k

vj,k where vj,k ∼ Multinomial (ck,θ·,k) .

The joint likelihood for a document, p(V , l |β,α,Θ,K,GP) (the w are now
derived quantities so not represented), thus becomes, after some rearrangement

∏

k

βαk

k lck+αk−1
k exp{−(βk + 1)lk}

Γ (αk)

∏

j,k

θ
vj,k

j,k

vj,k!
. (6)



Note that l can be marginalised out, yielding

∏

k

Γ (ck + αk)

Γ (αk)

βαk

k

(βk + 1)ck+αk

∏

j,k

θ
vj,k

j,k

vj,k!
(7)

and the posterior mean of lk given c is (ck + αk)/(1 + βk). Thus each ck ∼
Poisson-Gamma(αk, βk, 1).

6.2 The Conditional Gamma-Poisson Model

The likelihood follows the GP case, except that with probability ρk, lk = 0 and
thus ck = 0. The joint likelihood, p(V , l |β,α,ρ,Θ,K,CGP), thus becomes,
after some rearrangement

∏

k



(1− ρk)




βαk

k lck+αk−1
k exp{−(βk + 1)lk}

Γ (αk)

∏

j

θ
vj,k

j,k

vj,k!



 (8)

+ ρk



1lk=01ck=0

∏

j

1vj,k=0







 .

Note that l can be marginalised out, yielding

∏

k

(

(1− ρk)
Γ (ck + αk)

Γ (αk)

βαk

k

(βk + 1)ck+αk
+ ρk1ck=0

)
∏

j

θ
vj,k

j,k

vj,k!
(9)

The θj,k can be pulled out under the constraint
∑

j vj,k = ck. The posterior
mean of lk given c is (1− ρk)(ck + αk)/(1 + βk).

6.3 The Dirichlet-Multinomial Model

For the Dirichlet-multinomial model, a similar reconstruction applies:

m ∼ DirichletK(α) (10)

ck ∼ Multinomial (L,m)

wj =
∑

k

vj,k where vj,k ∼ Multinomial (ck,θ·,k) .

The joint likelihood, p(V ,m |α,Θ,K,DM), thus becomes, after some rearrange-
ment

L!Γ

(
∑

k

αk

)
∏

k

mck+αk−1
k

Γ (αk)

∏

j,k

θ
vj,k

j,k

vj,k!
. (11)

Again, m can be marginalised out yielding

L!
Γ (
∑

k αk)

Γ (L+
∑

k αk)

∏

k

Γ (ck + αk)

Γ (αk)

∏

j,k

θ
vj,k

j,k

vj,k!
. (12)



7 Algorithms

In developing an algorithm, the standard approach is to match an optimiza-
tion algorithm to the functional form of the likelihood. When using Bayesian or
some other statistical methodology, this basic approach is usually a first step, or
perhaps an inner loop for some more sophisticated computational statistics.

The likelihoods do not yield easily to standard EM analysis. To see this,
consider the forms of the likelihood for a single document for the GP model,
and consider the probability for a latent variable z given the observed data
w, p(z |w,β,α,Θ,K,GP). For EM analysis, one needs to be able to compute
Ez∼p(z|w,Θ,...) [log p(w, z |Θ, . . .)]. There are three different forms of the likeli-
hood seen so far depending on which latent variables z are kept on the left-hand
side of the probability:

p(w, l |β,α,Θ,K,GP): from Equation (2) has the term (
∑

k lkθj,k)
wj , which

means there is no known simple posterior distribution for l given w.

p(w, l,V |β,α,Θ,K,GP): from Equation (6) has the term lck+αk−1
k which

links the two latent variables l and V , and prevents a simple evaluation of
El,V [vj,k] as required for the expected log probability.

p(w,V |β,α,Θ,K,GP): from Equation (7) has the term Γ (ck + αk) (where
ck =

∑

j vj , k), which means there is no known simple posterior distribution
for V given w.

Now one could always produce an EM-like algorithm by separately updating l

and V in turn according to some mean formula, but the guarantee of convergence
of Θ to a maximum posterior or likelihood value will not apply. In this spirit
earlier authors point out that EM-like principles apply and use EM terminology
since EM methods would apply if l was observed8. For the exponential family,
which this problem is in, the variational approximation algorithm with Kullback-
Leibler divergence corresponds to an extension of the EM algorithm [GB00,
Bun02]. This variational approach is covered below.

Algorithms for this problem follow some general approaches in the statisti-
cal computing community. Three basic approaches are presented here: a varia-
tional approximation, Gibbs sampling, and Rao-Blackwellised Gibbs sampling.
A maximum likelihood algorithm is not presented because it can be viewed as a
simplification of the algorithms here.

7.1 Variational Approximation with Kullback-Leibler Divergence

This approximate method was first applied to the sequential variant of the
Dirichlet-multinomial version of the problem by [BNJ03]. A fuller treatment of
these variational methods for the exponential family is given in [GB00, Bun02].

8 The likelihood p(w,V | l,β,α,Θ,K,GP) can be treated with EM methods using
the latent variable V and leaving l as if it was observed.



In this approach a factored posterior approximation is made for the latent
variables:

p(l,V |w,β,α,Θ,K,GP) ≈ q(l,V ) = ql(l)qV (V )

and this approximation is used to find expectations as part of an optimization
step. The EM algorithm results if an equality holds. The functional form of the
approximation can be derived by inspection of the recursive functional forms
(see [Bun02] Equation (4)):

ql(l) ∝ exp
(
EV ∼qV (V ) [log p (l,V ,w |Θ,α,β,K)]

)
(13)

qV (V ) ∝ exp
(
El∼ql(l) [log p (l,v,w |Θ,α,β,K)]

)
.

An important computation used during convergence in this approach is a
lower bound on the individual document log probabilities. This naturally falls
out during computation (see [Bun02] Equation (6)). Using the approximation
q(l,V ) defined by the above proportions, the bound is given by

log p (w |Θ,α,β,K)

≥ El,V ∼q(l,V ) [log p (l,V ,w |Θ,α,β,K)] + I(ql(l)) + I(qV (V )) .

The variational approximation applies to the Gamma-Poisson version and the
Dirichlet-multinomial version.

For the Gamma-Poisson Model: Looking at the recursive functionals of
Equation (13) and the likelihood of Equation (6), it follows that ql() must be K
independent Gammas one for each component, and qV () must be J independent
multinomials, one for each word. The most general case for the approximation
q() is thus

lk ∼ Gamma(ak, bk)

{vj,k : k = 1, . . . ,K} ∼ Multinomial(wj , {nj,k : k = 1, . . . ,K}) ,

which uses approximation parameters (ak, bk) for each Gamma and and n·,k
(normalised as

∑

k nj,k = 1) for each multinomial. These parameters form two
vectors a, b and a matrix N respectively. The approximate posterior takes the
form ql(l |a, b)qV (V |N).

Using these approximating distributions, and again looking at the recursive
functionals of Equation (13), one can extract the rewrite rules for the parameters:

nj,k =
1

Zj

θj,k exp (E [log lk]) , (14)

ak = αk +
∑

j

wjnj,k ,

bk = 1 + βk ,

where E [log lk] ≡ Elk∼p(lk | ak.bk) [log lk] = Ψ0(ak)− log bk ,

Zj ≡
∑

k

θj,k exp (E [log lk]) .



Here, Ψ0() is the digamma function, defined as d ln Γ (x)
dx

and available in most
scientific libraries. These equations form the first step of each major cycle, and
are performed on each document.

The second step is to re-estimate the model parameters Θ using the posterior
approximation by maximising the expectation of the log of the full posterior
probability

El,V ∼ql(l)qV (V ) [log p (l,V ,w,Θ |α,β,K)] .

This incorporates Equation (6) for each document, and a prior for each k-th
column of Θ of DirichletJ(γ) (the last model item in Section 4.1). Denote the
intermediate variables nj,k for the i-th document by adding a (i) subscript, as
nj,k,(i), and likewise for wj,(i). All these log probability formulas yield linear
terms in θj,k, thus with the normalising constraints for Θ one gets

θj,k ∝
∑

i

wj,(i)nj,k,(i) + γj . (15)

The lower bound on the log probability of Equation (14), after some simplifica-
tion and use of the rewrites of Equation (14), becomes

log
1

∏

j wj !
−
∑

k

log
Γ (αk)bak

k

Γ (ak)βαk

k

+
∑

k

(αk − ak)E [log lk] +
∑

j

wj logZj . (16)

The variational approximation algorithm for the Gamma-Poisson version is sum-
marised in Figure 4. An equivalent algorithm is produced if words are presented
sequentially instead of being bagged.

1. Initialise a for each document. The uniform initialisation would be ak =
`P

k
αk + L

´
/K. Note N is not stored.

2. Do for each document:
(a) Using Equations (14), recompute N and update a in place.
(b) Concurrently, compute the log-probability bound of Equation (16), and add

to a running total.
(c) Concurrently, maintain the sufficient statistics for Θ, the total

P

i
wj,(i)nj,k,(i) for each j, k over documents.

(d) Store a for the next cycle and discard N .
3. Update Θ using Equation (15), normalising appropriately.
4. Report the total log-probability bound, and repeat, starting at Step 2.

Fig. 4. K-L Variational Algorithm for Gamma-Poisson

Complexity: Because Step 2(a) only uses words appearing in a document, the
full Step 2 is O(SK) in time complexity where S is the number of words in the
full collection. Step 3 is O(JK) in time complexity. Space complexity is O(IK)



to store the intermediate parameters a for each document, and the O(2JK) to
store Θ and its statistics. In implementation, Step 2 for each document is often
quite slow, and thus both a and the document word data can be stored on disk
and streamed, thus the main memory complexity is O(2JK) since the O(S)
and O(IK) terms are on disk. If documents are very small (e.g., S/I ¿ K, for
instance “documents” are sentences or phrases), then this does not apply.

Correspondence with NMF: A precursor to the GaP model is non-negative ma-
trix factorisation (NMF) [LS99], which is based on the matrix approximation
paradigm using Kullback-Leibler divergence. The algorithm itself, converted to
the notation used here, is as follows

lk,(i) ←− lk,(i)

∑

j

θj,k
∑

j θj,k

wj,(i)
∑

k θj,klk,(i)
θj,k ←− θj,k

∑

i

lk,(i)
∑

i lk,(i)

wj,(i)
∑

k θj,klk,(i)

Notice that the solution is indeterminate up to a factor ψk. Multiply lk,(i) by ψk

and divide θj,k by ψk and the solution still holds. Thus, without loss of generality,
let θj,k be normalised on j, so that

∑

j θj,k = 1.

Lemma 2. The NMF equations above, where Θ is returned normalised, occur at

a maxima w.r.t. Θ and l for the Gamma-Poisson likelihood
∏

i p(w(i) |Θ, l(i),α =
0,β = 0,K,GP).

Proof. To see this, the following will be proven. Take a solution to the NMF equations,
and divide θj,k by a factor ψk =

P

j
θj,k, and multiply lk,(i) by the same factor. This

is equivalent to a solution for the following rewrite rules

lk,(i) ←− lk,(i)

X

j

θj,k

wj,(i)
P

k
θj,klk,(i)

θj,k ∝ θj,k

X

i

lk,(i)

wj,(i)
P

k
θj,klk,(i)

where θj,k is kept normalised on j. These equations hold at a maxima to the likelihood
Q

i
p(w(i) |Θ, l(i),α = 0,β = 0,K,GP). The left equation corresponds to a maxima

w.r.t. l(i) (note the Hessian for this is easily shown to be negative indefinite), and the
right is the EM equations for the likelihood. w.r.t. Θ.

To show equivalence of the above and the NMF equations, first prove the forward
direction. Take the scaled solution to NMF. The NMF equation for lk,(i) is equivalent
to the equation for lk,(i) in the lemma. Take the NMF equation for θj,k and separately
normalise both sides. The

P

i
lk,(i) term drops out and one is left with the equation

for θj,k in the lemma. Now prove the backward direction. It is sufficient to show that
the NMF equations hold for the solution to the rewrite rules in the lemma, since θj,k

is already normalised. The NMF equation for lk,(i) clearly holds. Assuming the rewrite
rules in the lemma hold, then

θj,k =
θj,k

P

i

`
lk,(i)wj,(i)

‹P

k
θj,klk,(i)

´

P

j
θj,k

P

i

`
lk,(i)wj,(i)

‹P

k
θj,klk,(i)

´

=
θj,k

P

i

`
lk,(i)wj,(i)

‹P

k
θj,klk,(i)

´

P

i
lk,(i)

P

j

`
θj,kwj,(i)

‹P

k
θj,klk,(i)

´ (reorder sum)

=
θj,k

P

i

`
lk,(i)wj,(i)

‹P

k
θj,klk,(i)

´

P

i
lk,(i)

(apply first rewrite rule)

Thus the second equation for NMF holds.



Note, including a latent variable such as l in the likelihood (and not dealing with
it using EM methods) does not achieve a correct maximum likelihood solution
for the expression

∏

i p(w(i) |Θ,α = 0,β = 0,K,GP). In practice, this is a
common approximate method for handling latent variable problems, and can
lead more readily to over-fitting.

For the Dirichlet-Multinomial Model: The variational approximation takes
a related form. The approximate posterior is given by:

m ∼ Dirichlet(a)

{vj,k : k = 1, . . . ,K} ∼ multinomial(wj , {nj,k : k = 1, . . . ,K})

This yields the same style update equations as Equations (14) except that βk = 1

nj,k =
1

Zj

θj,k exp (E [log mk]) , (17)

ak = αk +
∑

j

wjnj,k ,

where E [log mk] ≡ Emk∼p(mk |a) [log mk] = Ψ0(ak)− Ψ0

(
∑

k

ak

)

,

Zj ≡
∑

k

θj,k exp (E [log mk]) .

Equation (15) is also the same. The lower bound on the individual document log
probabilities, log p (w |Θ,α,K,DM) now takes the form

log
(
CL
w

)
− log

Γ (
∑

k ak)
∏

k Γ (αk)

Γ (
∑

k αk)
∏

k Γ (ak)
+
∑

k

(αk − ak)E [log mk] +
∑

j

wj logZj .

(18)
The correspondence with Equation (16) is readily seen.

The algorithm for Dirichlet-multinomial version is related to that in Figure 4.
Equations (17) replace Equations (14), Equation (18) replaces Equation (16),
and the initialisation for ak should be 0.5, a Jeffreys prior.

7.2 Direct Gibbs Sampling

There are two styles of Gibbs sampling that apply to DCA. The first is a basic
Gibbs sampling first proposed by Pritchard, Stephens and Donnelly [PSD00].
Gibbs sampling is a conceptually simple method. Each unobserved variable in
the problem is resampled in turn according to its conditional distribution. We
compute its posterior distribution conditioned on all other variables, and then
sample a new value for the variable using the posterior. For instance, an ordering
we might use in this problem is: l(1),V (1), l(2),V (2), . . . , l(I),V (I), Θ. All the
low level sampling in this section use well known distributions such as gamma
or multinomial, and are available in standard scientific libraries.



To develop this approach for the Gamma-Poisson, look at the full posterior,
which is a product of individual document likelihoods with the prior for Θ from
the last model item in Section 4.1. The constant terms have been dropped.

∏

i




∏

k

βαk

k l
ck,(i)+αk−1

k,(i) exp{−(βk + 1)lk,(i)}

Γ (αk)

∏

j,k

θ
vj,k,(i)

j,k

vj,k,(i)!




∏

j,k

θ
γj

j,k (19)

Each of the conditional distributions used in the Gibbs sampling are propor-
tional to this. The first conditional distribution is p(l(i) |V (i),β,α,Θ,K,GP).
From this, isolating the terms just in l(i), we see that each lk,(i) is conditionally
gamma distributed. Likewise, each v·,k,(i) is multinomial distributed given l(i)
and Θ, and each θ·,k is Dirichlet distributed given all the l(i) and V (i) for each
i. The other models are similar. An additional effort is required to arrange the
parameters and sequencing for efficient use of memory.

The major differentiator for Gibbs sampling is the resampling of the latent
component vector l. The sampling schemes used for each version are given in
Table 3. Some care is required with the conditional Gamma-Poisson. When ck =
0, the sampling for lk needs to decide whether to use the zero case or the non-
zero case. This uses Equation (9) to make the decision, and then resorts to
Equation (8) if it is non-zero.

Model Sampling

GP lk ∼ Gamma(ck + αk, 1 + βk).

CGP

If ck = 0, then Conditional Gamma-Poisson with rate
pk(1+βk)αk

(1−pk)β
αk
k

+pk(1+βk)αk
and Gamma(αk, 1+βk). If ck 6= 0, revert

to the above Gamma-Poisson case.

DM m ∼ Dirichlet({ck + αk : k}).

Table 3. Sampling components for direct Gibbs on a single document

The direct Gibbs algorithm for the general case is given in Figure 5. This
Gibbs scheme turns out to correspond to the variational approximation, except-
ing that sampling is done instead of maximisation or expectation.

The log probability of the words w can also accumulated in step 1(c). While
they are in terms of the latent variables, they still represent a reasonably unbi-
ased estimate of the likelihoods such as p

(
w(1), . . . ,w(I) |α,β,Θ,K,GP

)
.

7.3 Rao-Blackwellised Gibbs Sampling

Rao-Blackwellisation of Gibbs sampling [CR96] combines closed form updates of
variables with Gibbs sampling. It does so by a process called marginalisation or



1. For each document i, retrieve the last c(i) from store, then
(a) Sample the latent component variables l(i) (or its normalised counterpart

m(i)) as per Table 3.
(b) For each word j in the document with positive count wj,(i), the component

counts vector, from Equation (5) and Equation (10),

{vj,k,(i) : k = 1, . . . ,K} ∼ Multinomial

„

wj,(i),


lk,(i)θj,k

P

k
lk,(i)θj,k

: k

ff«

.

Alternatively, if the sequence-of-components version is to be used, the compo-
nent for each word can be sampled in turn using the corresponding Bernoulli
distribution.

(c) Concurrently, accumulate the log-probability p
`
w(i) | l(i),α,β,Θ,K,GP

´
,

p
`
w(i) | l(i),α,β,ρ,Θ,K,CGP

´
, or p

`
w(i) |m(i), L(i),α,β,Θ,K,DM

´
.

(d) Concurrently, maintain the sufficient statistics for Θ, the total
P

i
vj,k,(i) for

each j, k over documents.
(e) Store c(i) for the next cycle and discard V (i).

2. Using a Dirichlet prior for rows of Θ, and having accumulated all the counts V (i)

for each document in sufficient statistics for Θ, then its posterior has rows that
are Dirichlet. Sample.

3. Report the total log-probability, and report.

Fig. 5. One Major Cycle of Gibbs Algorithm for DCA

variable elimination. When feasible, it can lead to significant improvements, the
general case for DCA. Griffiths and Steyvers [GS04] introduced this algorithm
for LDA, and it easily extends to the Gamma-Poisson model and its conditional
variant with little change to the sampling routines.

When using this approach, the first step is to consider the full posterior prob-
ability and see which variables can be marginalised out without introducing com-
putational complexity in the sampling. For the GP model, look at the posterior
given in Equation (19). Equations (7) shows that the l(i)’s can be marginalised
out. Likewise, Θ can be marginalised out because it is an instance of a Dirich-
let. This yields a Gamma-Poisson posterior p

(
V (1), . . . ,V (I) |α,β,K,GP

)
, with

constants dropped:

∏

i




∏

k

Γ (ck,(i) + αk)

(1 + βk)ck,(i)+αk

∏

j,k

1

vj,k,(i)!




∏

k

∏

j Γ
(
γj +

∑

i vj,k,(i)

)

Γ
(
∑

j γj +
∑

i ck,(i)

) (20)

Below it is shown that a short sampling routine can be based on this.

A similar formula applies in the conditional GP case using Equation (9) for
the marginalisation of l(i)’s. The first term with

∏

k in Equation (20) becomes

(1− ρk)
Γ (ck,(i) + αk)

Γ (αk)

βαk

k

(1 + βk)ck,(i)+αk
+ ρk1ck,(i)=0 .



Likewise a similar formula applies in the Dirichlet-multinomial version using
Equation (12):

∏

i




∏

k

Γ (ck,(i) + αk)
∏

jk

1

vj,k,(i)!




∏

k

∏

j Γ
(
γj +

∑

i vj,k,(i)

)

Γ
(
∑

j γj +
∑

i ck,(i)

) (21)

Here a term of the form Γ
(∑

k(ck,(i) + αk)
)

drops out because
∑

k ck,(i) = L(i)

is known and thus constant.
Now the posterior distributions have been marginalised for each of the three

models, GP, CGP and DM, a Gibbs sampling scheme needs to be developed.
Each set {vj,k,(i) : k ∈ 1, . . . ,K} sums to wj,(i), moreover the forms of the
functions in Equations (20) and (21) are quite nasty. A way out of this mess is
to convert the scheme from a bag of words model, implicit in the use of V (i) and
w(i), to a sequence of words model.

This proceeds as follows. Run along the L(i) words in a document and up-
date the corresponding component assignment for each word. Component as-
signments for the i-th document are in a L(i)-dimensional vector k(i), where
each entry takes a value from 1, . . . ,K. Suppose the l-th word has word index
jl. In one step, change the counts {vjl,k,(i) : k ∈ 1, . . . ,K} by one (one is in-
creased and one is decreased) keeping the total wjl,(i) constant. For instance, if a
word is originally in component k1 but updating by Gibbs sampling to k2, then
decrease vjl,k1,(i) by one and increase vjl,k2,(i) by one. Do this for L(i) words in
the document, for each document. Thus at word l for the i-th document, we
sample component assignment kl,(i) according to the posterior for kl,(i) with all
other assignments fixed. This posterior is proportional to (the denominator is a
convenient constant)

p (V | sequential,α,β,K,GP)|vjl,k,(i)←vjl,k,(i)+1k 6=kl

p (V | sequential,α,β,K,GP)|vjl,kl,(i)←vjl,kl,(i)−1

,

where the notation “sequential” is added to the right-hand side because the
combinatoric terms vj,k,(i)! of Equation (20) need to be dropped. This formula
simplifies dramatically because Γ (x+ 1)/Γ (x) = x.

Derived sampling schemes are given in Table 3. The (i) subscript is dropped
and assumed for all counts, and j = jl is the word index for the word whose
component index is being resampled. Since kl is being sampled, a K dimensional
probability vector is needed. The table gives the unnormalised form.

This Rao-Blackwellised Gibbs algorithm is given in Figure 6. As before, an
approximately unbiased log probability can be recorded in Step 2(c). This re-
quires a value for Θ. While the sufficient statistics could be used to supply the
current mean estimate for Θ, this is not a true sampled quantity. An alternative
method is to make a sample of Θ in each major cycle and use this.

Implementation notes: Due to Rao-Blackwellisation, both the l(i)’s and Θ

are effectively re-estimated with each sampling step, instead of once after the



Model Sampling Proportionality

GP
γj +

P

i
vj,k

P

j
γj +

P

i
ck

ck + αk

1 + βk

CGP

When ck > 0 use the proportionality of the GP case, and oth-
erwise

γj +
P

i
vj,k

P

j
γj +

P

i
ck

αk

1 + βk

(1− ρk)β
αk

k

(1− ρk)βαk

k + ρk(1 + βk)αk

DM
γj +

P

i
vj,k

P

j
γj +

P

i
ck

(ck + αk).

Table 4. Sampling kl = k given j = jl for Rao-Blackwellised Gibbs

1. Maintain the sufficient statistics for Θ, given by
P

i
vj,k,(i) for each j and k, and

the sufficient statistics for the component proportions l(i)/m(i) given by c(i).
2. For each document i, retrieve the L(i) component assignments for each word

then:
(a) Recompute statistics for l(i)/m(i) given by ck,(i) =

P

j
vj,k,(i) for each k from

the individual component assignment for each word.
(b) For each word l with word index jl and component assignment kl in the

document, resample the component assignment for this word according to
the marginalised likelihoods in this section.

i. First decrement vjl,kl,(i) and ckl,(i) by one to remove the component
assignment for the word.

ii. Sample kl = k proportionally as in Table 4.
iii. Increment vjl,kl,(i) and ckl,(i).

(c) Concurrently, record the log-probability such as
p
`
w(i) |V (i),α,β,Θ,K,GP

´
for the appropriate model.

(d) Concurrently, update the sufficient statistics for l(i)/m(i) and Θ.

Fig. 6. One Major Cycle of Rao-Blackwellised Gibbs Algorithm for DCA

full pass over documents. This is most effective during early stages, and explains
the superiority of the method observed in practice. Moreover, it means only one
storage slot for Θ is needed (to store the sufficient statistics), whereas in direct
Gibbs two slots are needed (current value plus the sufficient statistics). This
represents a major saving in memory. Finally, the l(i)’s and Θ can be sampled
at any stage of this process (because their sufficient statistics make up the totals
appearing in the formula), thus Gibbs estimates for them can be made as well
during the MCMC process.

7.4 Historical notes

Some previous algorithms can now be placed into context.



NMF: Straight maximum likelihood, e.g. in [LS99], expressed in terms of
Kullback-Leibler divergence minimization, where optimisation jointly applies
to the latent variables (see Section 7.1).

PLSI: Annealed maximum likelihood [Hof99], best viewed in terms of its clus-
tering precursor such as by [HB97],

Various Gibbs: Gibbs sampling on V (i), l(i)/m(i) and Θ in turn using a full
probability distribution by [PSD00], or Gibbs sampling on V (i) alone (or
equivalently, component assignments for words in the sequence of words
representation) after marginalising out l(i)/m(i) and Θ by [GS04],

LDA: variational approximation with Kullback-Leibler divergence by [BNJ03],
a significant introduction because of its speed.

Expectation propagation [ML02] requires O(KS) latent variables stored, a pro-
hibitive expense compared to the O(S) or O(KI) of other algorithms. Thus it
has not been covered here.

7.5 Other Aspects for Estimation and Use

A number of other algorithms are needed to put these models into regular use.

Component parameters: The treatment so far has assumed the parameter vec-
tors α and β are given. It is more usual to estimate these parameters with the
rest of the estimation tasks as done by [BNJ03, Can04]. This is feasible because
the parameters are shared across all the data, unlike the component vectors
themselves.

Estimating the number of components K: The number of components K is usu-
ally a constant assumed a priori. But it may be helpful to treat as a fittable
parameter or a random variable that adapts to the data. In popular terms, this
could be used to find the “right” number of components, though in practice and
theory such a thing might not exist. To obtain best-fitting K, we can employ
cross-validation, or we assess the evidence (or marginal likelihood) for the model
given a particular choice of K [CC95, BJ04]. In particular, evidence is the pos-
terior probability of the data given the choice of K after all other parameters
have been integrated out.

Use on new data: A typical use of the model requires performing inference related
to a particular document. Suppose, for instance, one wished to estimate how well
a snippet of text, a query, matches a document. Our document’s components are
summarised by the latent variables m (or l). If the new query is represented by
q, then p(q|m,Θ,K,GP) is the matching quantity one would like ideally. Since
m is unknown, we must average over it. Various methods have been proposed
[ML02, BJ04].



Alternative components: Hierarchical components have been suggested [BJ04]
as a way of organising an otherwise large flat component space. For instance,
the Wikipedia with over half a million documents can easily support the dis-
covery of several hundred components. Dirichlet processes have been devel-
oped as an alternative to the K-dimensional component priors in the Dirichlet-
multinomial/discrete model [YYT05], although in implementation the effect is
to use K-dimensional Dirichlets for a large K and delete low performing com-
ponents.

8 Applications

This section briefly discusses two applications of the methods.

8.1 Voting Data

One type of political science data are the roll calls. There were 459 roll calls in
the US Senate in the year 2003. For each of those, the vote of every senator was
recorded in three ways: ‘Yea’, ‘Nay’ and ‘Not Voting’. The outcome of the roll call
can be positive (e.g., Bill Passed, Nomination Confirmed) corresponding to ‘Yea’,
or negative (e.g., Resolution Rejected, Veto Sustained). Hence, the outcome of
the vote can be interpreted as the 101st senator, by associating positive outcomes
with ‘Yea’ and negative outcomes with ‘Nay’.

Application of the Method: We can now map the roll call data to the DCA
framework. For each senator X we form two ‘words’, where wX,y implies that
X voted ‘Yea’, and wX,n implies that X voted ‘Nay’. Each roll call can be in-
terpreted as a document containing a single occurrence of some of the available
words. The pair of words wX,y, wX,n is then treated as a binomial, so the mul-
tivariate formulation of Section 4.4 is used. Priors for Θ were Jeffreys priors, α

was (0.1,0.1,...,0.1), and regular Gibbs sampling was used.
Special-purpose models are normally used for interpreting roll call data in po-

litical science, and they often postulate a model of rational decision making. Each
senator is modelled as a position or an ideal point in a continuous spatial model
of preferences [CJR04]. For example, the first dimension often delineates the
liberal-conservative preference, and the second region or social issues preference.
The proximities between ideal points ‘explain’ the positive correlations between
the senators’ votes. The ideal points for each senator can be obtained either by
optimization, for instance, with the optimal classification algorithm [Poo00], or
through Bayesian modelling [CJR04].

Unlike the spatial models, the DCA interprets the correlations between votes
through membership of the senators in similar blocs. Blocs correspond to latent
component variables. Of course, we can speak only of the probability that a par-
ticular senator is a member of a particular bloc. The corresponding probability
vector is normalized and thus assures that a senator is always a member of one
bloc on the average. The outcome of the vote is also a member of several blocs,



and we can interpret the membership as a measure of how influential a particular
bloc is.

Our latent senator (bloc) can be seen as casting votes in each roll call. We
model the behavior of such latent blocs across the roll calls, and record it: it has
a behavior of its own. In turn, we also model the membership of each senator to
a particular bloc, which is assumed to be constant across all the blocs.

A related family of approaches is based on modelling relations or networks
using blocks or groups. There, a roll call would be described by one network,
individual senators would be nodes in that network, and a pair of nodes is
connected if the two senators agreed. Discrete latent variables try to explain the
existence of links between entities in terms of senators’ membership to blocks,
e.g., [HLL83, SN97].

Several authors prefer the block-model approach to modelling roll call data
[WMM05]. The membership of senators to the same block along with a high
probability for within-block agreements will explain the agreements between
senators. While a bloc can be seen as having an opinion about each issue, a
block does not (at least not explicitly). The authors also extended this model to
‘topics’, where the membership of senator to a particular block depends on the
topic of the issue; namely, the agreement between senators depends on what is
being discussed. The topic is also associated with the words that appear in the
description of an issue.

Visualization: We can analyze two aspects of the DCA model as applied to the
roll call data: we can examine the membership of senators in blocs, and we can
examine the actions of blocs for individual issues. The approach to visualization
is very similar, as we are visualizing a set of probability vectors. We can use the
gray scale to mirror the probabilities ranging from 0 (white) to 1 (black).

As yet, we have not mentioned the choice of K - the number of blocs. Al-
though the number of blocs can be a nuisance variable, such a model is distinctly
more difficult to show than one for a fixed K. We obtain the following negative
logarithms to the base 2 of the model’s likelihood forK = 4, 5, 6, 7, 10: 9448.6406,
9245.8770, 9283.1475, 9277.0723, 9346.6973. We see that K = 5 is overwhelm-
ingly selected over all others, with K = 4 being far worse. This means that with
our model, we best describe the roll call votes with the existence of five blocs.
Fewer blocs do not capture the nuances as well, while more blocs would not yield
reliable probability estimates given such an amount of data. Still, those models
are also valid to some extent. It is just that for a single visualization we pick the
best individual one of them.

We will now illustrate the membership of senators in blocs. Each senator is
represented with a vertical bar of 5 squares that indicate his or her membership
in blocs. We have arranged the senators from left to right using the binary PCA
approach of [deL03]. This ordering attempts to sort senators from the most
extreme to the most moderate and to the most extreme again. Figure 7 shows
the Democrat senators and Figure 8 the Republicans.
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We used MPCA and tested its use in its role as a feature construction tool, a
common use for PCA and ICA, and as a classification tool. For this, we used the
20 newsgroups collection described previously as well as the Reuters-21578 col-
lection9. We employed the SVMlight V5.0 [Joa99] classifier with default settings.
For classification, we added the class as a distinct multinomial (cf. Section 4.4)
for the training data and left it empty for the test data, and then predicted
the class value. Note that for performance and accuracy, SVM [Joa98] is a clear
winner [LYRL04]. It is interesting to see how MPCA compares.

Each component can be seen as generating a number of words in each doc-
ument. This number of component-generated words plays the same role in clas-
sification as does the number of lexemes in the document in ordinary classifica-
tion. In both cases, we employed the tf*idf transformed word and component-
generated word counts as feature values. Since SVM works with sparse data
matrices, we assumed that a component is not present in a document if the
number of words that a component would have generated is less than 0.01. The
components alone do not yield a classification performance that would be com-
petitive with SVM, as the label has no distinguished role in the fitting. However,
we may add these component-words in the default bag of words, hoping that the
conjunctions of words inherent to each component will help improve the classi-
fication performance.

For the Reuters collection, we used the ModApte split. For each of the 6 most
frequent categories, we performed binary classification. Further results are dis-
closed in Table 210. No major change was observed by adding 50 components to
the original set of words. By performing classification on components alone, the
results were inferior, even with a large number of components. In fact, with 300
components, the results were worse than with 200 components, probably because
of over-fitting. Therefore, regardless of the number of components, the SVM per-
formance with words cannot be reproduced by component-generated words in
this collection. Classifying newsgroup articles into 20 categories proved more suc-
cessful. We employed two replications of 5-fold cross validation, and we achieved
the classification accuracy of 90.7% with 50 additional MPCA components, and
87.1% with SVM alone. Comparing the two confusion matrices, the most frequent
mistakes caused by SVM+MPCA beyond those of SVM alone were predict-
ing talk.politics.misc as sci.crypt (26 errors) and talk.religion.misc predicted as
sci.electron (25 errors). On the other hand, the components helped better identify
alt.atheism and talk.politics.misc, which were misclassified as talk.religion.misc
(259 fewer errors) earlier. Also, talk.politics.misc and talk.religion.misc were not
misclassified as talk.politics.gun (98 fewer errors). These 50 components were
not very successful alone, resulting in 18.5% classification accuracy. By increas-
ing the number of components to 100 and 300, the classification accuracy grad-
ually increases to 25.0% and 34.3%. Therefore, many components are needed for
general-purpose classification.

9 The Reuters-21578, Distribution 1.0 test collection is available from David D. Lewis’
professional home page, currently: http://www.research.att.com/∼lewis

10 The numbers are percentages, and ‘P/R’ indicates precision/recall.



Table 5. SVM Classification Results

SVM SVM+MPCA
CAT ACC. P/R ACC. P/R

earn 98.58 98.5/97.1 98.45 98.2/97.1
acq 95.54 97.2/81.9 95.60 97.2/82.2
moneyfx 96.79 79.2/55.3 96.73 77.5/55.9
grain 98.94 94.5/81.2 98.70 95.7/74.5
crude 97.91 89.0/72.5 97.82 88.7/70.9
trade 98.24 79.2/68.1 98.36 81.0/69.8

MPCA (50 comp.) MPCA (200 comp.)
CAT ACC. P/R ACC. P/R

earn 96.94 96.1/94.6 97.06 96.3/94.8
acq 92.63 93.6/71.1 92.33 95.3/68.2
moneyfx 95.48 67.0/33.0 96.61 76.0/54.7
grain 96.21 67.1/31.5 97.18 77.5/53.0
crude 96.57 81.1/52.4 96.79 86.1/52.4
trade 97.82 81.4/49.1 97.91 78.3/56.0

From these experiments, we can conclude that components may help with
tightly coupled categories that require conjunctions of words (20 newsgroups),
but not with the keyword-identifiable categories (Reuters). Judging from the
ideas in [JB03], the components help in two cases: a) when the co-appearance
of two words is more informative than the sum of informativeness of individual
appearances of either word, and b) when the appearance of one word implies the
appearance of another word, which does not always appear in the document.

10 Conclusion

In this article, we have presented a unifying framework for various approaches
to discrete component analysis, presenting them as a model closely related to
ICA but suited for sparse discrete data. We have shown the relationships be-
tween existing approaches here such as NMF, PLSI, LDA, MPCA and GaP. For
instance, NMF with normalised results corresponds to an approximate maxi-
mum likelihood method for LDA, and GaP is the most general family of mod-
els. We have also presented the different algorithms available for three different
cases, Gamma-Poisson, conditional Gamma-Poisson (allowing sparse component
scores), and Dirichlet-multinomial. This extends a number of algorithms previous
developed for MPCA and LDA to the general Gamma-Poisson model. Exper-
iments with the Mpca software11 show that a typical 3GHz desktop machine
can build models in a few days with K in the hundreds for 3 gigabytes of text.

11 http://www.componentanalysis.org



These models share many similarities with both PCA and ICA, and are thus
useful in a range of feature engineering tasks in machine learning and pattern
recognition. A rich literature is alsoemerging extending the model in a variety
of directions. This is as much caused by the surprising performance of the al-
gorithms, as it is by the availability of general Gibbs sampling algorithms that
allow sophisticated modelling.
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editors, Proceedings of ECML-98, 10th European Conference on Machine
Learning, number 1398, pages 137–142, Chemnitz, DE, 1998. Springer Ver-
lag, Heidelberg, DE.

[Joa99] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support
Vector Learning. MIT Press, 1999.

[LS99] D. Lee and H. Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401:788–791, 1999.

[LYRL04] D.D. Lewis, Y. Yand, T.G. Rose, and F. Li. Rcv1: A new benchmark
collection for text categorization research. Journal of Machine Learning
Research, 5:361–397, 2004.

[MKB79] K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis. Academic
Press, 1979.

[ML02] T. Minka and J. Lafferty. Expectation-propagation for the generative as-
pect model. In UAI-2002, Edmonton, 2002.

[MN89] P. McCullagh and J.A. Nelder. Generalized Linear Models. Chapman and
Hall, London, second edition, 1989.

[Poo00] K.T. Poole. Non-parametric unfolding of binary choice data. Political
Analysis, 8(3):211–232, 2000.

[PSD00] J.K. Pritchard, M. Stephens, and P.J. Donnelly. Inference of population
structure using multilocus genotype data. Genetics, 155:945–959, 2000.

[PTL93] F. Pereira, N. Tishby, and L. Lee. Distributional clustering of English
words. In Proceedings of ACL-93, June 1993.

[Ros89] S.M. Ross. Introduction to Probability Models. Academic Press, fourth
edition, 1989.

[Row98] S. Roweis. EM algorithms for PCA and SPCA. In M.I. Jordan, M.J.
Kearns, and S.A. Solla, editors, Advances in Neural Information Processing
Systems, volume 10. The MIT Press, 1998.

[SN97] T.A.B. Snijders and K. Nowicki. Estimation and prediction for stochastic
block models for graphs with latent block structure. Journal of Classifi-
cation, 14:75–100, 1997.

[TB99] M.E. Tipping and C.M. Bishop. Probabilistic principal components anal-
ysis. J. Roy. Statistical Society B, 61(3):611–622, 1999.

[Tit] D.M. Titterington. Some aspects of latent structure analysis. In this
volume.

[vGv99] P.G.M. van der Heijden, Z. Gilula, and L.A. van der Ark. An extended
study into the relationship between correspondence analysis and latent
class analysis. Sociological Methodology, 29:147–186, 1999.

[WM82] M.A. Woodbury and K.G. Manton. A new procedure for analysis of med-
ical classification. Methods Inf Med, 21:210–220, 1982.

[WMM05] X. Wang, N. Mohanty, and A. McCallum. Group and topic discovery from
relations and text. In The 11th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining Workshop on Link Discovery:
Issues, Approaches and Applications (LinkKDD-05), pages 28–35, 2005.

[YYT05] K. Yu, S. Yu, and V. Tresp. Dirichlet enhanced latent semantic analysis. In
L.K. Saul, Y. Weiss, and L. Bottou, editors, Proc. of the 10th International
Workshop on Artificial Intelligence and Statistics, 2005.


