Skip to main content

Ensemble Pruning Using Reinforcement Learning

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3955))

Abstract

Multiple Classifier systems have been developed in order to improve classification accuracy using methodologies for effective classifier combination. Classical approaches use heuristics, statistical tests, or a meta-learning level in order to find out the optimal combination function. We study this problem from a Reinforcement Learning perspective. In our modeling, an agent tries to learn the best policy for selecting classifiers by exploring a state space and considering a future cumulative reward from the environment. We evaluate our approach by comparing with state-of-the-art combination methods and obtain very promising results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dietterich, T.G.: Machine-learning research: Four current directions. The AI Magazine 18, 97–136 (1998)

    Google Scholar 

  2. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Effective voting of heterogeneous classifiers. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS, vol. 3201, pp. 465–476. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of models. In: ICML 2004: Proceedings of the twenty-first international conference on Machine learning, p. 18. ACM Press, New York (2004)

    Google Scholar 

  5. Sutton, R.S., Barto, A.G.: Reinforcmement Learning, An Introduction. MIT Press, Cambridge (1999)

    Google Scholar 

  6. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)

    MATH  Google Scholar 

  7. Wolpert, D.H.: Stacked generalization. Technical Report LA-UR-90-3460, Los Alamos, NM (1990)

    Google Scholar 

  8. Christos Dimitrakakis, S.B.: Online adaptive policies for ensemble classifiers. Trends in Neurocomputing 64, 211–221 (2005)

    Article  Google Scholar 

  9. Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learning. In: Proc. 17th International Conf. on Machine Learning, pp. 511–518. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  10. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  11. Kohavi, R.: The power of decision tables. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 174–189. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  12. Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Proc. of the 12th International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann, Tahoe City, CA (1995)

    Google Scholar 

  13. Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: Proc. 15th International Conf. on Machine Learning, pp. 144–151. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  14. Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Francisco (1993)

    Google Scholar 

  15. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)

    Google Scholar 

  16. Cleary, J.G., Trigg, L.E.: K*: an instance-based learner using an entropic distance measure. In: Proc. 12th International Conference on Machine Learning, pp. 108–114. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  17. John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)

    Google Scholar 

  18. Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  19. Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Partalas, I., Tsoumakas, G., Katakis, I., Vlahavas, I. (2006). Ensemble Pruning Using Reinforcement Learning. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds) Advances in Artificial Intelligence. SETN 2006. Lecture Notes in Computer Science(), vol 3955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11752912_31

Download citation

  • DOI: https://doi.org/10.1007/11752912_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34117-8

  • Online ISBN: 978-3-540-34118-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics