Abstract
Multiple Classifier systems have been developed in order to improve classification accuracy using methodologies for effective classifier combination. Classical approaches use heuristics, statistical tests, or a meta-learning level in order to find out the optimal combination function. We study this problem from a Reinforcement Learning perspective. In our modeling, an agent tries to learn the best policy for selecting classifiers by exploring a state space and considering a future cumulative reward from the environment. We evaluate our approach by comparing with state-of-the-art combination methods and obtain very promising results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Dietterich, T.G.: Machine-learning research: Four current directions. The AI Magazine 18, 97–136 (1998)
Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)
Tsoumakas, G., Katakis, I., Vlahavas, I.P.: Effective voting of heterogeneous classifiers. In: Boulicaut, J.-F., Esposito, F., Giannotti, F., Pedreschi, D. (eds.) ECML 2004. LNCS, vol. 3201, pp. 465–476. Springer, Heidelberg (2004)
Caruana, R., Niculescu-Mizil, A., Crew, G., Ksikes, A.: Ensemble selection from libraries of models. In: ICML 2004: Proceedings of the twenty-first international conference on Machine learning, p. 18. ACM Press, New York (2004)
Sutton, R.S., Barto, A.G.: Reinforcmement Learning, An Introduction. MIT Press, Cambridge (1999)
Watkins, C., Dayan, P.: Q-learning. Machine Learning 8, 279–292 (1992)
Wolpert, D.H.: Stacked generalization. Technical Report LA-UR-90-3460, Los Alamos, NM (1990)
Christos Dimitrakakis, S.B.: Online adaptive policies for ensemble classifiers. Trends in Neurocomputing 64, 211–221 (2005)
Lagoudakis, M.G., Littman, M.L.: Algorithm selection using reinforcement learning. In: Proc. 17th International Conf. on Machine Learning, pp. 511–518. Morgan Kaufmann, San Francisco (2000)
Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)
Kohavi, R.: The power of decision tables. In: Lavrač, N., Wrobel, S. (eds.) ECML 1995. LNCS, vol. 912, pp. 174–189. Springer, Heidelberg (1995)
Cohen, W.W.: Fast effective rule induction. In: Prieditis, A., Russell, S. (eds.) Proc. of the 12th International Conference on Machine Learning, pp. 115–123. Morgan Kaufmann, Tahoe City, CA (1995)
Frank, E., Witten, I.H.: Generating accurate rule sets without global optimization. In: Proc. 15th International Conf. on Machine Learning, pp. 144–151. Morgan Kaufmann, San Francisco (1998)
Quinlan, J.R.: C4.5: programs for machine learning. Morgan Kaufmann Publishers, San Francisco (1993)
Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)
Cleary, J.G., Trigg, L.E.: K*: an instance-based learner using an entropic distance measure. In: Proc. 12th International Conference on Machine Learning, pp. 108–114. Morgan Kaufmann, San Francisco (1995)
John, G.H., Langley, P.: Estimating continuous distributions in Bayesian classifiers. In: Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345 (1995)
Bishop, C.M.: Neural networks for pattern recognition. Oxford University Press, Oxford (1996)
Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI repository of machine learning databases (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Partalas, I., Tsoumakas, G., Katakis, I., Vlahavas, I. (2006). Ensemble Pruning Using Reinforcement Learning. In: Antoniou, G., Potamias, G., Spyropoulos, C., Plexousakis, D. (eds) Advances in Artificial Intelligence. SETN 2006. Lecture Notes in Computer Science(), vol 3955. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11752912_31
Download citation
DOI: https://doi.org/10.1007/11752912_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34117-8
Online ISBN: 978-3-540-34118-5
eBook Packages: Computer ScienceComputer Science (R0)