Skip to main content

Expectation and Variance of Self-assembled Graph Structures

  • Conference paper
DNA Computing (DNA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3892))

Included in the following conference series:

Abstract

Understanding how nanostructures are self-assembled into more complex forms is a crucial component of nanotechnology that shall lead towards understanding other processes and structures in nature. In this paper we use a model of self-assembly using flexible junction molecules and describe how it can in some static conditions be used to predict the outcome of a graph self-assembly. Using probabilistic methods, we show the expectation and the variance of the number of self-assembled cycles, K 3, and discuss generalization of these results for C n . We tie this analysis to previously observed experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M., Cheng, Q., Goel, A., Huang, M.-D., Kempe, D., Moisset de Espanes, P., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of STOC 2002, Montreal Quebec, Canada (2002)

    Google Scholar 

  2. Adleamn, L.M., Kari, J., Kari, L., Reishus, D.: On the decidability of self-assembly of infinite ribons. In: Proceedings of FOCS 2002, IEEE Symposium on Foundations of Computer Science, Washington, pp. 530–537 (2002)

    Google Scholar 

  3. Chen, J.H., Seeman, N.C.: Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350, 631–633 (1991)

    Article  Google Scholar 

  4. Dugaiczyk, A., Boyer, H.W., Goodman, H.M.: Ligation of EcoRI endonuclease-generated DNA fragments into linear and circular structures. Journal of Molecular Biology 96(1), 171–178 (1975)

    Article  Google Scholar 

  5. Janson, S., Luczak, T., Rucinski, A.: Random Graphs. John Wiley, New York (2002)

    MATH  Google Scholar 

  6. Jonoska, N., Liao, S., Seeman, N.C.: Transducers with Programmanle Input by DNA Self-Assembli. In: Jonoska, N., Păun, G., Rozenberg, G. (eds.) Aspects of Molecular Computing. LNCS, vol. 2950, pp. 219–240. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Jonoska, N., Karl, S., Saito, M.: Three dimensional DNA structures in computing. BioSystems 52, 143–153 (1999)

    Article  Google Scholar 

  8. Jonoska, N., Sa-Ardyen, P., Seeman, N.C.: Computation by self-assembly of DNA graphs. Genetic Programming and Evolvable Machines 4, 123–137 (2003)

    Article  MATH  Google Scholar 

  9. Jonoska, N., McColm, G.L.: Self-assembly by DNA Junction Molecules: The Theoretical Model. In: Reif, J. (eds.) Foundations of Nanoscience (2004)

    Google Scholar 

  10. Kao, M.-Y., Ramachandran, V.: DNA self-assembly for constructing 3D boxes. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, pp. 429–440. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  11. Mao, C., Sun, W., Seeman, N.C.: Designed Two-Dimensional DNA Holliday Junction Arrays Visualized by Atomic Force Microscopy. Journal of American Chemical Society 121(23), 5437–5443 (1999)

    Article  Google Scholar 

  12. Qi, J., Li, X., Yang, X., Seeman, N.C.: Ligation of Triangles Built from bulged 3-arm DNA Branched Junctions. Journal of American Chemical Society 120, 6121–6130 (1996)

    Article  Google Scholar 

  13. Ross, S.M.: A First Course in Probability. Prentice Hall, Englewood Cliffs (2001)

    MATH  Google Scholar 

  14. Rothemund, P.W.K., Papadakis, P., Winfree, E.: Algorithmic Self-Assembly of DNA Sierpinski Triangles. In: Chen, J., Reif, J.H. (eds.) DNA 2003. LNCS, vol. 2943. Springer, Heidelberg (2004)

    Google Scholar 

  15. Rothemund, P.W.K., Winfree, E.: The Program-Size Complexity of Self-Assembled Squares. In: Proceedings of 33rd ACM meeting STOC 2001, Portland, Oregon, May 21-23, pp. 459–468 (2001)

    Google Scholar 

  16. Sa-Ardyen, P., Jonoska, N., Seeman, N.C.: Self-Assembly of graphs represented by DNA helix axis topology. Journal of American Chemical Society 126(21), 6648–6657 (2004)

    Article  Google Scholar 

  17. Seeman, N.C.: DNA junctions and lattices. Journal of theoretical biology 99, 237–247 (1982)

    Article  Google Scholar 

  18. Shih, W.M., Quispe, J.D., Joyce, G.F.: A 1.7-kilobase single stranded DNA folds into a nanoscale octahedron. Nature 427, 618–621 (2004)

    Article  Google Scholar 

  19. Spencer, J.H.: Ten lectures on the probabilistic method. SIAM, Philadelphia (1987)

    MATH  Google Scholar 

  20. Wang, Y., Mueller, J.E., Kemper, B., Seeman, N.C.: The assembly and characterization of 5 arm and 6 arm DNA junctions. Biochemistry 30, 5667–5674 (1991)

    Article  Google Scholar 

  21. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimentsional DNA crystals. Nature 394, 539–544 (1998)

    Article  Google Scholar 

  22. Zhang, Y., Seeman, N.C.: The construction of a DNA truncated octahedron. Journal of American Chemical Society 116(5), 1661–1669 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jonoska, N., McColm, G.L., Staninska, A. (2006). Expectation and Variance of Self-assembled Graph Structures. In: Carbone, A., Pierce, N.A. (eds) DNA Computing. DNA 2005. Lecture Notes in Computer Science, vol 3892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753681_11

Download citation

  • DOI: https://doi.org/10.1007/11753681_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34161-1

  • Online ISBN: 978-3-540-34165-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics