Skip to main content

Recognizing DNA Splicing

  • Conference paper
DNA Computing (DNA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3892))

Included in the following conference series:

Abstract

Motivated by recent techniques developed for observing evolutionary dynamics of a single DNA molecule, we introduce a formal model for accepting an observed behavior of a splicing system. The main idea is to input a marked DNA strand into a test tube together with certain restriction enzymes and, possibly, with other DNA strands. Under the action of the enzymes, the marked DNA strand starts to evolve by splicing with other DNA strands. The evolution of the marked DNA strand is “observed” by an outside observer and the input DNA strand is “accepted” if its (observed) evolution follows a certain expected pattern. We prove that using finite splicing system (finite set of rules and finite set of axioms), universal computation is attainable with simple observing and accepting devices made of finite state automata.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Science 226, 1021–1024 (1994)

    Article  Google Scholar 

  2. Alhazov, A., Cavaliere, M.: Computing by Observing Bio-Systems: The Case of Sticker Systems. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 1–13. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  3. Bruchez, M., Moronne, M., Gin, P., Weiss, S., Alavisatos, A.P.: Semiconductor Nanocrystals as Fluorescent Biological Labels. Science 281, 2013–2016 (1998)

    Article  Google Scholar 

  4. Cavaliere, M., Jonoska, N.: (Computing by) Observing Splicing Systems (manuscript, 2004)

    Google Scholar 

  5. Cavaliere, M., Leupold, P.: Evolution and Observation – A New Way to Look at Membrane Systems. In: Martín-Vide, C., Mauri, G., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2003. LNCS, vol. 2933, pp. 70–87. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Cavaliere, M., Leupold, P.: Evolution and Observation — A Non-Standard Way to Generate Formal Languages. Theoretical Computer Science 321, 233–248 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cavaliere, M., Leupold, P.: Evolution and Observation — A Non-Standard Way to Accept Formal Languages. In: Margenstern, M. (ed.) MCU 2004. LNCS, vol. 3354, pp. 152–162. Springer, Heidelberg (2005)

    Google Scholar 

  8. Chan, W.C.W., Nie, S.: Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science 281, 2016–2018 (1998)

    Article  Google Scholar 

  9. Goode, E., Pixton, D.: Semi-Simple Splicing Systems. In: Martin-Víde, C., Mitrana, V. (eds.) Where Mathematics, Computer Science, Linguistics and Biology Meet, pp. 343–352. Kluwer Academic Publisher, Dordrecht (2001)

    Chapter  Google Scholar 

  10. Head, T.: Formal Language Theory and DNA: An Analysis of the Generative Capacity of Specific Recombinant Behaviors. Bulletin of Mathematical Biology 49, 737–759 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jovin, T.M., Arndt-Jovin, D.J.: Cell Structure and Function by Microspectrofluorimetry. In: Kohen, E., Ploem, J.S., Hirschberg, J.G. (eds.), pp. 99–117. Academic, Orlando, Florida

    Google Scholar 

  12. Levsky, J.M., Shenoy, S.M., Pezo, R.C., Singer, R.H.: Single-Cell Gene Expression Profiling. Science 297, 836–840 (2002)

    Article  Google Scholar 

  13. Lippincott-Schwartz, J., et al.: Green Fluorescent Proteins. In: Sullivan, K., Kay, S. (eds.), pp. 261–291. Academic, San Diego (1999)

    Google Scholar 

  14. Lippincott-Schwartz, J., Snapp, E., Kenworthy, A.: Studying Protein Dynamics in Living Cells. Nature Rev. Mol. Cell. Biol. 2, 444–456 (2001)

    Article  Google Scholar 

  15. Mateescu, A., Păun, G., Rozenberg, G., Salomaa, A.: Simple Splicing Systems. Discrete Applied Mathematics 84, 145–163 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Michalet, X., Pinaud, F.F., Bentolila, L.A., Tsay, J.M., Doose, S., Li, J.J., Sundaresan, G., Wu, A.M., Gambhir, S.S., Weiss, S.: Quantum Dots for Live Cells, in Vivo Imaging and Diagnostic. Science 307 (2005), www.sciencemag.org

  17. Păun, G.: Splicing systems with targets are computationally universal. Information Processing Letters 59, 129–133 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing - New Computing Paradigms. Springer, Berlin (1998)

    MATH  Google Scholar 

  19. Rigler, R., Elson, E.S.: Fluorescent Correlation Spectroscopy. Springer, New York (2001)

    Book  Google Scholar 

  20. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages. Springer, Berlin (1997)

    MATH  Google Scholar 

  21. Salomaa, A.: Formal Languages. Academic Press, New York (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cavaliere, M., Jonoska, N., Leupold, P. (2006). Recognizing DNA Splicing. In: Carbone, A., Pierce, N.A. (eds) DNA Computing. DNA 2005. Lecture Notes in Computer Science, vol 3892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753681_2

Download citation

  • DOI: https://doi.org/10.1007/11753681_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34161-1

  • Online ISBN: 978-3-540-34165-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics