Skip to main content

Chain Reaction Systems Based on Loop Dissociation of DNA

  • Conference paper
DNA Computing (DNA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3892))

Included in the following conference series:

  • 855 Accesses

Abstract

In the field of DNA computing, more and more efforts are made for constructing molecular machines made of DNA that work in vitro or in vivo. States of some of those machines are represented by their conformations, such as hairpin and bulge loops, and state transitions are realized by conformational changes, in which such loops are opened. The ultimate goal of this study is to implement not only independent molecular machines, but also networks of interacting machines, called chain reaction systems, where a conformational change of one machine triggers a conformational change of another machine in a cascaded manner. A chain reaction system would result in a much larger computational power than a single machine in the number of states and in the complexity of computation. As a simple example, we propose a general-purpose molecular system consisting of logical gates and sensors. As a more complex example, we present a new idea of constructing a DNA automaton by a chain reaction system, which can have an arbitrary number of states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Uejima, H., et al.: Secondary Structure Design of Multi-state DNA Machines Based on Sequential Structure Transitions. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 74–85. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  2. Kubota, M., et al.: Branching DNA Machines Based on Transitions of Hairpin Structures. In: Proceedings of the 2003 Congress on Evolutionary Computation (CEC 2003), pp. 2542–2548 (2003)

    Google Scholar 

  3. Takahashi, K., et al.: On Computation of Minimum Free Energy and Partition Function of Multiple Nucleic Acid Sequences. In: FIT 2004, Forum on Information Science and Technology, pp. 91–92 (2004)

    Google Scholar 

  4. Dirks, R.M., et al.: Paradigms for computational nucleic acid design. Nucleic Acids Res. 32, 1392–1403 (2004)

    Article  Google Scholar 

  5. Arita, M., et al.: DNA Sequence Design Using Templates. New Generation Computing 20, 263–277 (2002)

    Article  MATH  Google Scholar 

  6. Kobayashi, S., et al.: On Template Method for DNA Sequence Design. In: Hagiya, M., Ohuchi, A. (eds.) DNA 2002. LNCS, vol. 2568, pp. 205–214. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Hofacker, I.L.: Vienna RNA secondary structure server. Nucleic Acids Res. 31, 3429–3431 (2003)

    Article  Google Scholar 

  8. Ogihara, M., et al.: Simulating Boolean circuits on a DNA computer. Algorithmica 25, 239–250 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Amos, M., et al.: DNA simulation of Boolean circuits. In: Proc. of the Third Annual Conference on Genetic Programming, pp. 679–683. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  10. Carbone, A., et al.: Circuits and programmable self-assembling DNA structures. PNAS 99, 12577–12582 (2002)

    Article  MathSciNet  Google Scholar 

  11. Yurke, B., et al.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

  12. Seelig, G., et al.: DNA Hybridization Catalysts and Catalyst Circuits. In: DNA10, Tenth International Meeting on DNA Based Computers, Preliminary Proceedings, pp. 202–213 (2004)

    Google Scholar 

  13. Gao, Y., et al.: DNA implementation of nondeterminism. In: DNA Based Computers III. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 48, pp. 137–148 (1999)

    Google Scholar 

  14. Garzon, M., et al.: In vitro Implementation of Finite-State Machines. In: Wood, D., Yu, S. (eds.) WIA 1997. LNCS, vol. 1436, pp. 56–74. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  15. Benenson, Y., et al.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)

    Article  Google Scholar 

  16. Benenson, Y., et al.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)

    Article  Google Scholar 

  17. Takahashi, K., et al.: Preliminary Experiments on Hairpin Structure Dissociation for Constructing Robust DNA Machines. In: Zhang, J., He, J.-H., Fu, Y. (eds.) CIS 2004. LNCS, vol. 3314, pp. 285–290. Springer, Heidelberg (2004)

    Google Scholar 

  18. Takahashi, K., et al.: Photo- and Thermo-Regulation of DNA Nanomachines (submitted)

    Google Scholar 

  19. Dirks, R.M., et al.: Triggered amplification by hybridization chain reaction. PNAS 101, 15275–15278 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Takahashi, K., Yaegashi, S., Kameda, A., Hagiya, M. (2006). Chain Reaction Systems Based on Loop Dissociation of DNA. In: Carbone, A., Pierce, N.A. (eds) DNA Computing. DNA 2005. Lecture Notes in Computer Science, vol 3892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753681_27

Download citation

  • DOI: https://doi.org/10.1007/11753681_27

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34161-1

  • Online ISBN: 978-3-540-34165-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics