Abstract
Recent experimental progress in DNA lattice construction, DNA robotics, and DNA computing provides the basis for designing DNA cellular computing devices, i.e. autonomous nano-mechanical DNA computing devices embedded in DNA lattices. Once assembled, DNA cellular computing devices can serve as reusable, compact computing devices that perform (universal) computation, and programmable robotics devices that demonstrate complex motion. As a prototype of such devices, we recently reported the design of an Autonomous DNA Turing Machine, which is capable of universal sequential computation, and universal translational motion, i.e. the motion of the head of a single tape universal mechanical Turing machine. In this paper, we describe the design of an Autonomous DNA Cellular Automaton (ADCA), which can perform parallel universal computation by mimicking a one-dimensional (1D) universal cellular automaton. In the computation process, this device, embedded in a 1D DNA lattice, also demonstrates well coordinated parallel motion. The key technical innovation here is a molecular mechanism that synchronizes pipelined “molecular reaction waves” along a 1D track, and in doing so, realizes parallel computation. We first describe the design of ADCA on an abstract level, and then present detailed DNA sequence level implementation using commercially available protein enzymes. We also discuss how to extend the 1D design to 2D.
The work is supported by NSF ITR Grants EIA-0086015 and CCR-0326157, NSF QuBIC Grants EIA-0218376 and EIA-0218359, and DARPA/AFSOR Contract F30602-01-2-0561.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)
Alberti, P., Mergny, J.L.: DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl. Acad. Sci. USA 100, 1569–1573 (2003)
Barish, R., Rothemund, P.W.K., Winfree, E.: Algorithmic self-assembly of a binary counter using DNA tiles (in preparation, 2005)
Bath, J., Green, S.J., Turberfield, A.J.: A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Intl. Ed. 44, 4358–4361 (2005)
Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides a computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA 100, 2191–2196 (2003)
Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)
Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)
Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc. 126, 13924–13925 (2004)
Chen, Y., Wang, M., Mao, C.: An autonomous DNA nanomotor powered by a DNA enzyme. Angew. Chem. Int. Ed. 43, 3554–3557 (2004)
Feng, L., Park, S.H., Reif, J.H., Yan, H.: A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Ed. 42, 4342–4346 (2003)
He, Y., Chen, Y., Liu, H., Ribbe, A.E., Mao, C.: Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005)
Henry, A.A., Romesberg, F.E.: Beyond A, C, G, and T: Augmenting nature’s alphabet. Curr. Opin. Chem. Biol 7, 727–733 (2003)
Kuramochi, J., Sakakibara, Y.: Intensive in vitro experiments of implementing and executing finite automata in test tube. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 59–67. Springer, Heidelberg (2006)
LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)
Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004)
Malo, J., Mitchell, J.C., Venien-Bryan, C., Harris, J.R., Wille, H., Sherratt, D.J., Turberfield, A.J.: Engineering a 2D protein-DNA crystal. Angew. Chem. Intl. Ed. 44, 3057–3061 (2005)
Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)
Mitchell, J.C., Harris, J.R., Malo, J., Bath, J.J., Turberfield, A.J.: Self-assembly of chiral DNA nanotubes. J. Am. Chem. Soc. 126, 16342–16343 (2004)
Rothemund, P.W.K.: A DNA and restriction enzyme implementation of Turing machines. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers: Proceedings of the DIMACS Workshop, Providence, Rhode Island, April 4, vol. 27, pp. 75–119. American Mathematical Society, Princeton (1995)
Rothemund, P.W.K.: Generation of arbitrary nanoscale shapes and patterns by scaffolded DNA origami (2005)
Rothemund, P.W.K., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D.K., Winfree, E.: Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16353 (2004)
Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA sierpinski triangles. PLoS Biology 2(12), 2–e424 (2004)
Seeman, N.C.: From genes to machines: DNA nanomechanical devices. Trends in Biochemical Sciences 30, 119–125 (2005)
Sherman, W.B., Seeman, N.C.: A precisely controlled DNA biped walking device. Nano Lett. 4, 1203–1207 (2004)
Shin, J.S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)
Stojanovic, M.N., Semova, S., Kolpashchikov, D., Macdonald, J., Morgan, C., Stefanovic, D.: Deoxyribozyme-based ligase logic gates and their initial circuits. J. Am. Chem. Soc. 127, 6914–6915 (2005)
Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: Molecular devices - a DNA zyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Intl. Ed. 44, 4355–4358 (2005)
Turberfield, A.J., Mitchell, J.C., Yurke Jr., B., Mills, A.P., Blakey, M.I., Simmel, F.C.: DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003)
Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)
Wolfram, S.: A new kind of science. Wolfram Media, Inc., Champaign (2002)
Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of DNA tile complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA 100(14), 8103–8108 (2003)
Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)
Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002)
Yin, P., Turberfield, A.J., Reif, J.H.: Designs of autonomous unidirectional walking DNA devices. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 119–130. Springer, Heidelberg (2005)
Yin, P., Turberfield, A.J., Sahu, S., Reif, J.H.: Design of an autonomous DNA nanomechanical device capable of universal computation and universal translational motion. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 344–356. Springer, Heidelberg (2005)
Yin, P., Yan, H., Daniell, X.G., Turberfield, A.J., Reif, J.H.: A unidirectional DNA walker moving autonomously along a linear track. Angew. Chem. Int. Ed. 43, 4906–4911 (2004)
Yurke, B., Turberfield Jr., A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yin, P., Sahu, S., Turberfield, A.J., Reif, J.H. (2006). Design of Autonomous DNA Cellular Automata. In: Carbone, A., Pierce, N.A. (eds) DNA Computing. DNA 2005. Lecture Notes in Computer Science, vol 3892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753681_32
Download citation
DOI: https://doi.org/10.1007/11753681_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34161-1
Online ISBN: 978-3-540-34165-9
eBook Packages: Computer ScienceComputer Science (R0)