Skip to main content

Design of Autonomous DNA Cellular Automata

  • Conference paper
DNA Computing (DNA 2005)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3892))

Included in the following conference series:

Abstract

Recent experimental progress in DNA lattice construction, DNA robotics, and DNA computing provides the basis for designing DNA cellular computing devices, i.e. autonomous nano-mechanical DNA computing devices embedded in DNA lattices. Once assembled, DNA cellular computing devices can serve as reusable, compact computing devices that perform (universal) computation, and programmable robotics devices that demonstrate complex motion. As a prototype of such devices, we recently reported the design of an Autonomous DNA Turing Machine, which is capable of universal sequential computation, and universal translational motion, i.e. the motion of the head of a single tape universal mechanical Turing machine. In this paper, we describe the design of an Autonomous DNA Cellular Automaton (ADCA), which can perform parallel universal computation by mimicking a one-dimensional (1D) universal cellular automaton. In the computation process, this device, embedded in a 1D DNA lattice, also demonstrates well coordinated parallel motion. The key technical innovation here is a molecular mechanism that synchronizes pipelined “molecular reaction waves” along a 1D track, and in doing so, realizes parallel computation. We first describe the design of ADCA on an abstract level, and then present detailed DNA sequence level implementation using commercially available protein enzymes. We also discuss how to extend the 1D design to 2D.

The work is supported by NSF ITR Grants EIA-0086015 and CCR-0326157, NSF QuBIC Grants EIA-0218376 and EIA-0218359, and DARPA/AFSOR Contract F30602-01-2-0561.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Alberti, P., Mergny, J.L.: DNA duplex-quadruplex exchange as the basis for a nanomolecular machine. Proc. Natl. Acad. Sci. USA 100, 1569–1573 (2003)

    Article  Google Scholar 

  3. Barish, R., Rothemund, P.W.K., Winfree, E.: Algorithmic self-assembly of a binary counter using DNA tiles (in preparation, 2005)

    Google Scholar 

  4. Bath, J., Green, S.J., Turberfield, A.J.: A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Intl. Ed. 44, 4358–4361 (2005)

    Article  Google Scholar 

  5. Benenson, Y., Adar, R., Paz-Elizur, T., Livneh, Z., Shapiro, E.: DNA molecule provides a computing machine with both data and fuel. Proc. Natl. Acad. Sci. USA 100, 2191–2196 (2003)

    Article  Google Scholar 

  6. Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)

    Article  Google Scholar 

  7. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)

    Article  Google Scholar 

  8. Chelyapov, N., Brun, Y., Gopalkrishnan, M., Reishus, D., Shaw, B., Adleman, L.: DNA triangles and self-assembled hexagonal tilings. J. Am. Chem. Soc. 126, 13924–13925 (2004)

    Article  Google Scholar 

  9. Chen, Y., Wang, M., Mao, C.: An autonomous DNA nanomotor powered by a DNA enzyme. Angew. Chem. Int. Ed. 43, 3554–3557 (2004)

    Article  Google Scholar 

  10. Feng, L., Park, S.H., Reif, J.H., Yan, H.: A two-state DNA lattice switched by DNA nanoactuator. Angew. Chem. Int. Ed. 42, 4342–4346 (2003)

    Article  Google Scholar 

  11. He, Y., Chen, Y., Liu, H., Ribbe, A.E., Mao, C.: Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005)

    Article  Google Scholar 

  12. Henry, A.A., Romesberg, F.E.: Beyond A, C, G, and T: Augmenting nature’s alphabet. Curr. Opin. Chem. Biol 7, 727–733 (2003)

    Article  Google Scholar 

  13. Kuramochi, J., Sakakibara, Y.: Intensive in vitro experiments of implementing and executing finite automata in test tube. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 59–67. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. LaBean, T.H., Yan, H., Kopatsch, J., Liu, F., Winfree, E., Reif, J.H., Seeman, N.C.: The construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J. Am. Chem. Soc. 122, 1848–1860 (2000)

    Article  Google Scholar 

  15. Liu, D., Wang, M., Deng, Z., Walulu, R., Mao, C.: Tensegrity: Construction of rigid DNA triangles with flexible four-arm DNA junctions. J. Am. Chem. Soc. 126, 2324–2325 (2004)

    Article  Google Scholar 

  16. Malo, J., Mitchell, J.C., Venien-Bryan, C., Harris, J.R., Wille, H., Sherratt, D.J., Turberfield, A.J.: Engineering a 2D protein-DNA crystal. Angew. Chem. Intl. Ed. 44, 3057–3061 (2005)

    Article  Google Scholar 

  17. Mao, C., LaBean, T.H., Reif, J.H., Seeman, N.C.: Logical computation using algorithmic self-assembly of DNA triple-crossover molecules. Nature 407, 493–496 (2000)

    Article  Google Scholar 

  18. Mitchell, J.C., Harris, J.R., Malo, J., Bath, J.J., Turberfield, A.J.: Self-assembly of chiral DNA nanotubes. J. Am. Chem. Soc. 126, 16342–16343 (2004)

    Article  Google Scholar 

  19. Rothemund, P.W.K.: A DNA and restriction enzyme implementation of Turing machines. In: Lipton, R.J., Baum, E.B. (eds.) DNA Based Computers: Proceedings of the DIMACS Workshop, Providence, Rhode Island, April 4, vol. 27, pp. 75–119. American Mathematical Society, Princeton (1995)

    Google Scholar 

  20. Rothemund, P.W.K.: Generation of arbitrary nanoscale shapes and patterns by scaffolded DNA origami (2005)

    Google Scholar 

  21. Rothemund, P.W.K., Ekani-Nkodo, A., Papadakis, N., Kumar, A., Fygenson, D.K., Winfree, E.: Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16353 (2004)

    Article  Google Scholar 

  22. Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA sierpinski triangles. PLoS Biology 2(12), 2–e424 (2004)

    Article  Google Scholar 

  23. Seeman, N.C.: From genes to machines: DNA nanomechanical devices. Trends in Biochemical Sciences 30, 119–125 (2005)

    Article  Google Scholar 

  24. Sherman, W.B., Seeman, N.C.: A precisely controlled DNA biped walking device. Nano Lett. 4, 1203–1207 (2004)

    Article  Google Scholar 

  25. Shin, J.S., Pierce, N.A.: A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004)

    Article  Google Scholar 

  26. Stojanovic, M.N., Semova, S., Kolpashchikov, D., Macdonald, J., Morgan, C., Stefanovic, D.: Deoxyribozyme-based ligase logic gates and their initial circuits. J. Am. Chem. Soc. 127, 6914–6915 (2005)

    Article  Google Scholar 

  27. Tian, Y., He, Y., Chen, Y., Yin, P., Mao, C.: Molecular devices - a DNA zyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Intl. Ed. 44, 4355–4358 (2005)

    Article  Google Scholar 

  28. Turberfield, A.J., Mitchell, J.C., Yurke Jr., B., Mills, A.P., Blakey, M.I., Simmel, F.C.: DNA fuel for free-running nanomachines. Phys. Rev. Lett. 90, 118102 (2003)

    Article  Google Scholar 

  29. Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)

    Article  Google Scholar 

  30. Wolfram, S.: A new kind of science. Wolfram Media, Inc., Champaign (2002)

    MATH  Google Scholar 

  31. Yan, H., LaBean, T.H., Feng, L., Reif, J.H.: Directed nucleation assembly of DNA tile complexes for barcode patterned DNA lattices. Proc. Natl. Acad. Sci. USA 100(14), 8103–8108 (2003)

    Article  Google Scholar 

  32. Yan, H., Park, S.H., Finkelstein, G., Reif, J.H., LaBean, T.H.: DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 301(5641), 1882–1884 (2003)

    Article  Google Scholar 

  33. Yan, H., Zhang, X., Shen, Z., Seeman, N.C.: A robust DNA mechanical device controlled by hybridization topology. Nature 415, 62–65 (2002)

    Article  Google Scholar 

  34. Yin, P., Turberfield, A.J., Reif, J.H.: Designs of autonomous unidirectional walking DNA devices. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 119–130. Springer, Heidelberg (2005)

    Google Scholar 

  35. Yin, P., Turberfield, A.J., Sahu, S., Reif, J.H.: Design of an autonomous DNA nanomechanical device capable of universal computation and universal translational motion. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 344–356. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  36. Yin, P., Yan, H., Daniell, X.G., Turberfield, A.J., Reif, J.H.: A unidirectional DNA walker moving autonomously along a linear track. Angew. Chem. Int. Ed. 43, 4906–4911 (2004)

    Article  Google Scholar 

  37. Yurke, B., Turberfield Jr., A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yin, P., Sahu, S., Turberfield, A.J., Reif, J.H. (2006). Design of Autonomous DNA Cellular Automata. In: Carbone, A., Pierce, N.A. (eds) DNA Computing. DNA 2005. Lecture Notes in Computer Science, vol 3892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753681_32

Download citation

  • DOI: https://doi.org/10.1007/11753681_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34161-1

  • Online ISBN: 978-3-540-34165-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics