Abstract
We introduce a class of generalized DNF formulae called wDNF or weighted disjunctive normal form, and present a molecular algorithm that learns a wDNF formula from training examples. Realized in DNA molecules, the wDNF machines have a natural probabilistic semantics, allowing for their application beyond the pure Boolean logical structure of the standard DNF to real-life problems with uncertainty. The potential of the molecular wDNF machines is evaluated on real-life genomics data in simulation. Our empirical results suggest the possibility of building error-resilient molecular computers that are able to learn from data, potentially from wet DNA data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: An autonomous molecular computer for logical control of gene expression. Nature 429, 423–429 (2004)
Baum, E.B.: Building an associative memory vastly larger than the brain. Science 268, 583–585 (1995)
Chen, J., Deaton, R., Wang, Y.-Z.: A DNA-based memory with in vitro learning and associative recall. In: Chen, J., Reif, J.H. (eds.) DAN 2003. LNCS, vol. 2943, pp. 145–156. Springer, Heidelberg (2004)
Cheok, M.H., et al.: Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nature Genetics 34, 85–90 (2003)
Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wickham, G.S.: Experimental construction of very large scale DNA databases with associative search capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 231–247. Springer, Heidelberg (2002)
Rose, J.A., Deaton, R.J., Hagiya, M., Suyama, A.: A DNA-based in vitro genetic program. Journal of Biological Physics 28, 493–498 (2002)
Sakakibara, Y.: Solving computational learning problems with Boolean formulae on DNA computers. In: DNA6. LNCS, vol. 2052, pp. 220–230. Springer, Heidelberg (2001)
SantaLucia, J., Hicks, D.: The thermodynamics of DNA structural motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004)
Shackelford, G., Volper, D.: Learning k-DNF with noise in the attributes. In: COLT 1988: Proc. First Annual Workshop on Computational Learning Theory, pp. 97–103 (1988)
Valiant, L.: Robust logics. In: Proc. ACM Symposium on the Theory of Computing (STOC 1999), pp. 642–651 (1999)
Wartel, R.M., Benight, A.S.: Thermal denaturation of DNA molecules: A comparison of theory with experiments. Physics Reports 126(2), 67–107 (1985)
Zhang, B.-T., Jang, H.-Y.: A Bayesian algorithm for in vitro molecular evolution of pattern classifiers. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 294–303. Springer, Heidelberg (2005)
Zhang, B.-T., Mühlenbein, H.: Balancing accuracy and parsimony in genetic programming. Evolutionary Computation 3(1), 17–38 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zhang, BT., Jang, HY. (2006). Molecular Learning of wDNF Formulae. In: Carbone, A., Pierce, N.A. (eds) DNA Computing. DNA 2005. Lecture Notes in Computer Science, vol 3892. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753681_34
Download citation
DOI: https://doi.org/10.1007/11753681_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34161-1
Online ISBN: 978-3-540-34165-9
eBook Packages: Computer ScienceComputer Science (R0)