Abstract
We apply the algebraic approach to infinite-valued constraint satisfaction to classify the computational complexity of all constraint satisfaction problems with templates that have a highly transitive automorphism group. A relational structure has such an automorphism group if and only if all the constraint types are Boolean combinations of the equality relation, and we call the corresponding constraint languages equality constraint languages. We show that an equality constraint language is tractable if it admits a constant unary or an injective binary polymorphism, and is NP-complete otherwise.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bodirsky, M.: Constraint satisfaction with infinite domains. PhD thesis, Humboldt-Universitat zu Berlin (2004)
Bodirsky, M., Nešetřil, J.: Constraint satisfaction with countable homogeneous templates. In: Baaz, M., Makowsky, J.A. (eds.) CSL 2003. LNCS, vol. 2803, pp. 44–57. Springer, Heidelberg (2003)
Bodnarčuk, V.G., Kalužnin, L.A., Kotov, V.N., Romov, B.A.: Galois theory for post algebras, part I and II. Cybernetics 5, 243–539 (1969)
Bulatov, A.: Tractable conservative constraint satisfaction problems. In: Proceedings of LICS 2003, pp. 321–330 (2003)
Bulatov, A., Krokhin, A., Jeavons, P.: The complexity of maximal constraint languages. In: Proceedings of STOC 2001, pp. 667–674 (2001)
Bulatov, A., Krokhin, A., Jeavons, P.G.: Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing 34, 720–742 (2005)
Cameron, P.J.: Oligomorphic Permutation Groups. Cambridge University Press, Cambridge (1990)
Dechter, R., van Beek, P.: Local and global relational consistency. TCS 173(1), 283–308 (1997)
Garey, Johnson: A Guide to NP-completeness. CSLI Press, Stanford (1978)
Geiger, D.: Closed systems of functions and predicates. Pacific Journal of Mathematics 27, 95–100 (1968)
Heindorf, L.: The maximal clones on countable sets that include all permutations. Algebra univers. 48, 209–222 (2002)
Hodges, W.: A shorter model theory. Cambridge University Press, Cambridge (1997)
Jeavons, P., Cohen, D., Gyssens, M.: Closure properties of constraints. Journal of the ACM 44(4), 527–548 (1997)
Krasner, M.: Généralisation et analogues de la théorie de Galois. In: Congrés de la Victoire de l’Ass. France avancement des sciences, pp. 54–58 (1945)
Pinsker, M.: The number of unary clones containing the permutations on an infinite set. Acta Sci. Math, Szeged (to appear, 2005)
Pöschel, R., Kalužnin, L.A.: Funktionen- und Relationenalgebren. Deutscher Verlag der Wissenschaften (1979)
Szendrei, A.: Clones in universal Algebra. Seminaire de mathematiques superieures. Les Presses de L’Universite de Montreal (1986)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bodirsky, M., Kára, J. (2006). The Complexity of Equality Constraint Languages. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds) Computer Science – Theory and Applications. CSR 2006. Lecture Notes in Computer Science, vol 3967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753728_14
Download citation
DOI: https://doi.org/10.1007/11753728_14
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34166-6
Online ISBN: 978-3-540-34168-0
eBook Packages: Computer ScienceComputer Science (R0)