Skip to main content

Approximate Methods for Constrained Total Variation Minimization

  • Conference paper
Computer Science – Theory and Applications (CSR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3967))

Included in the following conference series:

  • 963 Accesses

Abstract

Constrained total variation minimization and related convex optimization problems have applications in many areas of image processing and computer vision such as image reconstruction, enhancement, noise removal, and segmentation. We propose a new method to approximately solve this problem. Numerical experiments show that this method gets close to the globally optimal solution, and is 15-100 times faster for typical images than a state-of-the-art interior point method. Our method’s denoising performance is comparable to that of a state-of-the-art noise removal method of [4]. Our work extends our previously published algorithm for solving the constrained total variation minimization problem for 1D signals [13] which was shown to produce the globally optimal solution exactly in O(Nlog N) time where N is the number of data points.

This work was supported in part by the National Science Foundation (NSF) through CAREER award CCR-0093105 and through grant IIS-0329156.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alizadeh, F., Goldfarb, D.: Second-order cone programming. Math. Program. 95(1), 3–51 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andersen, E.D., Roos, C., Terlaky, T.: On implementing a primal-dual interior-point method for conic quadratic optimization. Math. Program. 95(2), 249–277 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Blomgren, P., Chan, T.F.: Modular solvers for image restoration problems using the discrepancy principle. Numer. Linear Algebra Appl. 9, 347–358 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chambolle, A.: An algorithm for total variation minimization and applications. J. Math. Imaging Vis. 20, 89–97 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chan, T.F., Golub, G.H., Mulet, P.: A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6), 1964–1977 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Combettes, P.L., Luo, J.: An adaptive level set method for nondifferentiable constrained image recovery. IEEE Trans. Image Proc. 11(11), 1295–1304 (2002)

    Article  MathSciNet  Google Scholar 

  7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  8. Dobson, D.C., Santosa, F.: An image-enhancement technique for electrical impedance tomography. Inverse Problems 10, 317–334 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dong, X., Pollak, I.: Multiscale segmentation with vector-valued nonlinear diffusions on arbitrary graphs. IEEE Trans. Image Proc. (to appear)

    Google Scholar 

  10. Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT as an overcomplete denoising tool. In: Proc. Int. TICSP Workshop on Spectral Methods and Multirate Signal Processing, SMMSP 2005, Riga, Latvia (June 2005)

    Google Scholar 

  11. Goldfarb, D., Yin, W.: Second-order cone programming methods for total variation-based image restoration. SIAM J. Sci. Comput. 27(2), 622–645 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Li, Y., Santosa, F.: A computational algorithm for minimizing total variation in image restoration. IEEE Trans. Image Proc. 5(6), 987–995 (1996)

    Article  Google Scholar 

  13. Pollak, I., Willsky, A.S., Huang, Y.: Nonlinear evolution equations as fast and exact solvers of estimation problems. IEEE Trans. Signal Proc. 53(2), 484–498 (2005)

    Article  MathSciNet  Google Scholar 

  14. Pollak, I., Willsky, A.S., Krim, H.: Image segmentation and edge enhancement with stabilized inverse diffusion equations. IEEE Trans. Image Proc. 9(2), 256–266 (2000)

    Article  MATH  Google Scholar 

  15. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of gaussians in the wavelet domain. IEEE Trans. Image Proc. 12(11), 1338–1351 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sauer, K., Bouman, C.: Bayesian estimation of transmission tomograms using segmentation based optimization. IEEE Trans. on Nuclear Science 39(4), 1144–1152 (1992)

    Article  Google Scholar 

  18. Tsuchiya, T.: A convergence analysis of the scaling-invariant primal-dual path-following algorithms for second-order cone programming. Optimization Methods and Software 11(12), 141–182 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17(1), 227–238 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vogel, C.R., Oman, M.E.: Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Proc. 7(6) (June 1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Dong, X., Pollak, I. (2006). Approximate Methods for Constrained Total Variation Minimization. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds) Computer Science – Theory and Applications. CSR 2006. Lecture Notes in Computer Science, vol 3967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753728_41

Download citation

  • DOI: https://doi.org/10.1007/11753728_41

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34166-6

  • Online ISBN: 978-3-540-34168-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics