Skip to main content

Extended Resolution Proofs for Conjoining BDDs

  • Conference paper
Computer Science – Theory and Applications (CSR 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3967))

Included in the following conference series:

  • 1081 Accesses

Abstract

We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, based for instance on clause learning. We have implemented a proof generator for propositional logic formulae in conjunctive normal form, called EBDDRES. We present details of our implementation and also report on experimental results. To our knowledge this is the first step towards a practical application of extended resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7 (1960)

    Google Scholar 

  2. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5(7) (1962)

    Google Scholar 

  3. Marques-Silva, J.P., Sakallah, K.A.: GRASP — a new search algorithm for satisfiability. In: Proc. ICCAD 1996 (1996)

    Google Scholar 

  4. Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proc. DAC 2001 (2001)

    Google Scholar 

  5. Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proc. DATE 2002 (2002)

    Google Scholar 

  6. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  8. Velev, M., Bryant, R.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. J. Symb. Comput. 35(2) (2003)

    Google Scholar 

  9. Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: Debugging overconstrained declarative models using unsatisfiable cores. In: Proc. ASE 2003 (2003)

    Google Scholar 

  10. Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. AI EDAM 17(1) (2003)

    Google Scholar 

  11. McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: Proc. POPL 2005 (2005)

    Google Scholar 

  13. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: Proc. DATE 2003 (2003)

    Google Scholar 

  15. Motter, D.B., Markov, I.L.: A compressed breadth-first search for satisfiability. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, p. 29. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  16. Franco, J., Kouril, M., Schlipf, J., Ward, J., Weaver, S., Dransfield, M.R., Vanfleet, W.M.: SBSAT: a state-based, BDD-based satisfiability solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 398–410. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  17. Damiano, R., Kukula, J.: Checking satisfiability of a conjunction of BDDs. In: DAC 2003 (2003)

    Google Scholar 

  18. Huang, J., Darwiche, A.: Toward good elimination orders for symbolic SAT solving. In: Proc. ICTAI 2004 (2004)

    Google Scholar 

  19. Pan, G., Vardi, M.Y.: Search vs. Symbolic techniques in satisfiability solving. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 235–250. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  20. Jin, H., Somenzi, F.: CirCUs: A hybrid satisfiability solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 211–223. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  21. Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Comp. 35(8) (1986)

    Google Scholar 

  22. Uribe, T.E., Stickel, M.E.: Ordered binary decision diagrams and the Davis-Putnam procedure. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845, Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  23. Groote, J.F., Zantema, H.: Resolution and binary decision diagrams cannot simulate each other polynomially. Discrete Applied Mathematics 130(2) (2003)

    Google Scholar 

  24. Urquhart, A.: The complexity of propositional proofs. Bulletin of the EATCS 64 (1998)

    Google Scholar 

  25. Robinson, J.A.: A machine-oriented logic based on the resolution principle. JACM 12 (1965)

    Google Scholar 

  26. Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic (1970)

    Google Scholar 

  27. Cook, S.: A short proof of the pigeon hole principle using extended resolution. SIGACT News 8(4) (1976)

    Google Scholar 

  28. Haken, A.: The intractability of resolution. Theoretical Comp. Science 39 (1985)

    Google Scholar 

  29. Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22 (2004)

    Google Scholar 

  30. Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult instances of boolean satisfiability in the presence of symmetry. IEEE Trans. on Comp. Aided Design 22(9) (2003)

    Google Scholar 

  31. Plaisted, D., Biere, A., Zhu, Y.: A satisfiability procedure for quantified boolean formulae. Discrete Applied Mathematics 130(2) (2003)

    Google Scholar 

  32. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  33. Aloul, F., Markov, I., Sakallah, K.: FORCE: A fast and easy–to–implement variable-ordering heuristic. In: ACM Great Lakes Symp. on VLSI (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sinz, C., Biere, A. (2006). Extended Resolution Proofs for Conjoining BDDs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds) Computer Science – Theory and Applications. CSR 2006. Lecture Notes in Computer Science, vol 3967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753728_60

Download citation

  • DOI: https://doi.org/10.1007/11753728_60

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34166-6

  • Online ISBN: 978-3-540-34168-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics