Abstract
We present a method to convert the construction of binary decision diagrams (BDDs) into extended resolution proofs. Besides in proof checking, proofs are fundamental to many applications and our results allow the use of BDDs instead—or in combination with—established proof generation techniques, based for instance on clause learning. We have implemented a proof generator for propositional logic formulae in conjunctive normal form, called EBDDRES. We present details of our implementation and also report on experimental results. To our knowledge this is the first step towards a practical application of extended resolution.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Davis, M., Putnam, H.: A computing procedure for quantification theory. JACM 7 (1960)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communications of the ACM 5(7) (1962)
Marques-Silva, J.P., Sakallah, K.A.: GRASP — a new search algorithm for satisfiability. In: Proc. ICCAD 1996 (1996)
Moskewicz, M., Madigan, C., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient SAT solver. In: Proc. DAC 2001 (2001)
Goldberg, E., Novikov, Y.: BerkMin: A fast and robust SAT-solver. In: Proc. DATE 2002 (2002)
Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)
Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without bDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207. Springer, Heidelberg (1999)
Velev, M., Bryant, R.: Effective use of boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. J. Symb. Comput. 35(2) (2003)
Shlyakhter, I., Seater, R., Jackson, D., Sridharan, M., Taghdiri, M.: Debugging overconstrained declarative models using unsatisfiable cores. In: Proc. ASE 2003 (2003)
Sinz, C., Kaiser, A., Küchlin, W.: Formal methods for the validation of automotive product configuration data. AI EDAM 17(1) (2003)
McMillan, K.L., Amla, N.: Automatic abstraction without counterexamples. In: Garavel, H., Hatcliff, J. (eds.) TACAS 2003. LNCS, vol. 2619, pp. 2–17. Springer, Heidelberg (2003)
Xie, Y., Aiken, A.: Scalable error detection using boolean satisfiability. In: Proc. POPL 2005 (2005)
McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003)
Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: Practical implementations and other applications. In: Proc. DATE 2003 (2003)
Motter, D.B., Markov, I.L.: A compressed breadth-first search for satisfiability. In: Mount, D.M., Stein, C. (eds.) ALENEX 2002. LNCS, vol. 2409, p. 29. Springer, Heidelberg (2002)
Franco, J., Kouril, M., Schlipf, J., Ward, J., Weaver, S., Dransfield, M.R., Vanfleet, W.M.: SBSAT: a state-based, BDD-based satisfiability solver. In: Giunchiglia, E., Tacchella, A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 398–410. Springer, Heidelberg (2004)
Damiano, R., Kukula, J.: Checking satisfiability of a conjunction of BDDs. In: DAC 2003 (2003)
Huang, J., Darwiche, A.: Toward good elimination orders for symbolic SAT solving. In: Proc. ICTAI 2004 (2004)
Pan, G., Vardi, M.Y.: Search vs. Symbolic techniques in satisfiability solving. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 235–250. Springer, Heidelberg (2005)
Jin, H., Somenzi, F.: CirCUs: A hybrid satisfiability solver. In: Hoos, H.H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 211–223. Springer, Heidelberg (2005)
Bryant, R.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Comp. 35(8) (1986)
Uribe, T.E., Stickel, M.E.: Ordered binary decision diagrams and the Davis-Putnam procedure. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845, Springer, Heidelberg (1994)
Groote, J.F., Zantema, H.: Resolution and binary decision diagrams cannot simulate each other polynomially. Discrete Applied Mathematics 130(2) (2003)
Urquhart, A.: The complexity of propositional proofs. Bulletin of the EATCS 64 (1998)
Robinson, J.A.: A machine-oriented logic based on the resolution principle. JACM 12 (1965)
Tseitin, G.: On the complexity of derivation in propositional calculus. In: Studies in Constructive Mathematics and Mathematical Logic (1970)
Cook, S.: A short proof of the pigeon hole principle using extended resolution. SIGACT News 8(4) (1976)
Haken, A.: The intractability of resolution. Theoretical Comp. Science 39 (1985)
Beame, P., Kautz, H., Sabharwal, A.: Towards understanding and harnessing the potential of clause learning. J. Artif. Intell. Res. (JAIR) 22 (2004)
Aloul, F., Ramani, A., Markov, I., Sakallah, K.: Solving difficult instances of boolean satisfiability in the presence of symmetry. IEEE Trans. on Comp. Aided Design 22(9) (2003)
Plaisted, D., Biere, A., Zhu, Y.: A satisfiability procedure for quantified boolean formulae. Discrete Applied Mathematics 130(2) (2003)
Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp. 61–75. Springer, Heidelberg (2005)
Aloul, F., Markov, I., Sakallah, K.: FORCE: A fast and easy–to–implement variable-ordering heuristic. In: ACM Great Lakes Symp. on VLSI (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Sinz, C., Biere, A. (2006). Extended Resolution Proofs for Conjoining BDDs. In: Grigoriev, D., Harrison, J., Hirsch, E.A. (eds) Computer Science – Theory and Applications. CSR 2006. Lecture Notes in Computer Science, vol 3967. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11753728_60
Download citation
DOI: https://doi.org/10.1007/11753728_60
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34166-6
Online ISBN: 978-3-540-34168-0
eBook Packages: Computer ScienceComputer Science (R0)