Skip to main content

A Totally Unimodular Description of the Consistent Value Polytope for Binary Constraint Programming

  • Conference paper
Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR 2006)

Abstract

We present a theoretical study on the idea of using mathematical programming relaxations for filtering binary constraint satisfaction problems. We introduce the consistent value polytope and give a linear programming description that is provably tighter than a recently studied formulation. We then provide an experimental study that shows that, despite the theoretical progress, in practice filtering based on mathematical programming relaxations continues to perform worse than standard arc-consistency algorithms for binary constraint satisfaction problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ahuja, R.K., Magnati, T.L., Orlin, J.B.: Network Flows. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  2. Appa, G., Magos, D., Mourtos, I.: An LP-based proof for the non-existence of a pair of Orthogonal Latin Squares for n=6. OR Letters 32(4), 336–344 (2004)

    MathSciNet  MATH  Google Scholar 

  3. Bessiere, C.: Random Uniform CSP Generators, http://www.lirmm.fr/~bessiere/generator.html

  4. Fahle, T., Junker, U., Karisch, S.E., Kohl, N., Sellmann, M., Vaaben, B.: Constraint programming based column generation for crew assignment. Journal of Heuristics 8(1), 59–81 (2002)

    Article  MATH  Google Scholar 

  5. Fahle, T., Sellmann, M.: Cost-Based Filtering for the Constrained Knapsack Problem. Annals of Operations Research 115, 73–93 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Focacci, F., Lodi, A., Milano, M.: Cutting Planes in Constraint Programming: An Hybrid Approach. In: Proceedings of CP-AI-OR 2000, Paderborn Center for Parallel Computing, Technical Report tr-001-2000, pp. 45–51 (2000)

    Google Scholar 

  7. Focacci, F., Lodi, A., Milano, M.: Cost-Based Domain Filtering. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999)

    Google Scholar 

  8. Hooker, J.N.: A hybrid method for planning and scheduling. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 305–316. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  9. Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical Programming 96, 33–60 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. ILOG SA. ILOG Concert 2.0, http://www.ilog.com

  11. Junker, U., Karisch, S.E., Kohl, N., Vaaben, B., Fahle, T., Sellmann, M.: A Framework for Constraint programming based column generation. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 261–275. Springer, Heidelberg (1999)

    Google Scholar 

  12. Khemmoudj, M.O.I., Bennaceur, H., Nagih, A.: Combining Arc-Consistency and Dual Lagrangean Relaxation for Filtering CSPs. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 258–272. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Kim, H.-J., Hooker, J.N.: Solving fixed-charge network flow problems with a hybrid optimization and constraint programming approach. Annals of Operations Research 115, 95–124 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Milano, M.: Integration of Mathematical Programming and Constraint Programming for Combinatorial Optimization Problems. In: Tutorial at CP 2000 (2000)

    Google Scholar 

  15. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, Chichester (1988)

    Book  MATH  Google Scholar 

  16. Ottosson, G., Thorsteinsson, E.S.: Linear Relaxation and Reduced-Cost Based Propagation of Continuous Variable Subscripts. In: CP-AI-OR 2000, Paderborn Center for Parallel Computing, Technical Report tr-001-2000, pp. 129–138 (2000)

    Google Scholar 

  17. Régin, J.-C.: Cost-Based Arc Consistency for Global Cardinality Constraints. Constraints 7(3-4), 387–405 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sellmann, M.: Theoretical Foundations of CP-based Lagrangian Relaxation. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 634–647. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  19. Sellmann, M.: Approximated Consistency for Knapsack Constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 679–693. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  20. Sellmann, M., Fahle, T.: Constraint Programming Based Lagrangian Relaxation for the Automatic Recording Problem. Annals of Operations Research 118, 17–33 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Sellmann, M., Fahle, T.: Coupling Variable Fixing Algorithms for the Automatic Recording Problem. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 134–145. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  22. Sellmann, M., Harvey, W.: Heuristic Constraint Propagation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 738–743. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aron, I.D., Leventhal, D.H., Sellmann, M. (2006). A Totally Unimodular Description of the Consistent Value Polytope for Binary Constraint Programming. In: Beck, J.C., Smith, B.M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2006. Lecture Notes in Computer Science, vol 3990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11757375_4

Download citation

  • DOI: https://doi.org/10.1007/11757375_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34306-6

  • Online ISBN: 978-3-540-34307-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics