Abstract
We present a theoretical study on the idea of using mathematical programming relaxations for filtering binary constraint satisfaction problems. We introduce the consistent value polytope and give a linear programming description that is provably tighter than a recently studied formulation. We then provide an experimental study that shows that, despite the theoretical progress, in practice filtering based on mathematical programming relaxations continues to perform worse than standard arc-consistency algorithms for binary constraint satisfaction problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ahuja, R.K., Magnati, T.L., Orlin, J.B.: Network Flows. Prentice Hall, Englewood Cliffs (1993)
Appa, G., Magos, D., Mourtos, I.: An LP-based proof for the non-existence of a pair of Orthogonal Latin Squares for n=6. OR Letters 32(4), 336–344 (2004)
Bessiere, C.: Random Uniform CSP Generators, http://www.lirmm.fr/~bessiere/generator.html
Fahle, T., Junker, U., Karisch, S.E., Kohl, N., Sellmann, M., Vaaben, B.: Constraint programming based column generation for crew assignment. Journal of Heuristics 8(1), 59–81 (2002)
Fahle, T., Sellmann, M.: Cost-Based Filtering for the Constrained Knapsack Problem. Annals of Operations Research 115, 73–93 (2002)
Focacci, F., Lodi, A., Milano, M.: Cutting Planes in Constraint Programming: An Hybrid Approach. In: Proceedings of CP-AI-OR 2000, Paderborn Center for Parallel Computing, Technical Report tr-001-2000, pp. 45–51 (2000)
Focacci, F., Lodi, A., Milano, M.: Cost-Based Domain Filtering. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 189–203. Springer, Heidelberg (1999)
Hooker, J.N.: A hybrid method for planning and scheduling. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 305–316. Springer, Heidelberg (2004)
Hooker, J.N., Ottosson, G.: Logic-based Benders decomposition. Mathematical Programming 96, 33–60 (2003)
ILOG SA. ILOG Concert 2.0, http://www.ilog.com
Junker, U., Karisch, S.E., Kohl, N., Vaaben, B., Fahle, T., Sellmann, M.: A Framework for Constraint programming based column generation. In: Jaffar, J. (ed.) CP 1999. LNCS, vol. 1713, pp. 261–275. Springer, Heidelberg (1999)
Khemmoudj, M.O.I., Bennaceur, H., Nagih, A.: Combining Arc-Consistency and Dual Lagrangean Relaxation for Filtering CSPs. In: Barták, R., Milano, M. (eds.) CPAIOR 2005. LNCS, vol. 3524, pp. 258–272. Springer, Heidelberg (2005)
Kim, H.-J., Hooker, J.N.: Solving fixed-charge network flow problems with a hybrid optimization and constraint programming approach. Annals of Operations Research 115, 95–124 (2002)
Milano, M.: Integration of Mathematical Programming and Constraint Programming for Combinatorial Optimization Problems. In: Tutorial at CP 2000 (2000)
Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, Chichester (1988)
Ottosson, G., Thorsteinsson, E.S.: Linear Relaxation and Reduced-Cost Based Propagation of Continuous Variable Subscripts. In: CP-AI-OR 2000, Paderborn Center for Parallel Computing, Technical Report tr-001-2000, pp. 129–138 (2000)
Régin, J.-C.: Cost-Based Arc Consistency for Global Cardinality Constraints. Constraints 7(3-4), 387–405 (2002)
Sellmann, M.: Theoretical Foundations of CP-based Lagrangian Relaxation. In: Wallace, M. (ed.) CP 2004. LNCS, vol. 3258, pp. 634–647. Springer, Heidelberg (2004)
Sellmann, M.: Approximated Consistency for Knapsack Constraints. In: Rossi, F. (ed.) CP 2003. LNCS, vol. 2833, pp. 679–693. Springer, Heidelberg (2003)
Sellmann, M., Fahle, T.: Constraint Programming Based Lagrangian Relaxation for the Automatic Recording Problem. Annals of Operations Research 118, 17–33 (2003)
Sellmann, M., Fahle, T.: Coupling Variable Fixing Algorithms for the Automatic Recording Problem. In: Meyer auf der Heide, F. (ed.) ESA 2001. LNCS, vol. 2161, pp. 134–145. Springer, Heidelberg (2001)
Sellmann, M., Harvey, W.: Heuristic Constraint Propagation. In: Van Hentenryck, P. (ed.) CP 2002. LNCS, vol. 2470, pp. 738–743. Springer, Heidelberg (2002)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Aron, I.D., Leventhal, D.H., Sellmann, M. (2006). A Totally Unimodular Description of the Consistent Value Polytope for Binary Constraint Programming. In: Beck, J.C., Smith, B.M. (eds) Integration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems. CPAIOR 2006. Lecture Notes in Computer Science, vol 3990. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11757375_4
Download citation
DOI: https://doi.org/10.1007/11757375_4
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34306-6
Online ISBN: 978-3-540-34307-3
eBook Packages: Computer ScienceComputer Science (R0)