Skip to main content

Covering a Set of Points with a Minimum Number of Lines

  • Conference paper
Algorithms and Complexity (CIAC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3998))

Included in the following conference series:

Abstract

We consider the minimum line covering problem: given a set S of n points in the plane, we want to find the smallest number l of straight lines needed to cover all n points in S. We show that this problem can be solved in O(n log l) time if lO(log1 − ε n), and that this is optimal in the algebraic computation tree model (we show that the Ω(nlog l) lower bound holds for all values of l up to \(O(\sqrt n)\)). Furthermore, a O(log l)-factor approximation can be found within the same O(n log l) time bound if \(l \in O(\sqrt[4]{n})\). For the case when l ∈ Ω(log n) we suggest how to improve the time complexity of the exact algorithm by a factor exponential in l.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ben-Or, M.: Lower Bounds for Algebraic Computation Trees. In: Proc. 15th Ann. ACM Symp. on Theory of Comp., pp. 80–86. ACM Press, New York (1983)

    Google Scholar 

  2. Edelsbrunner, H., Guibas, L., Stolfi, J.: Optimal Point Location in a Monotone Subdivision. SIAM J. Comput. 15, 317–340 (1986); Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1986)

    Google Scholar 

  3. Grantson, M., Levcopoulos, C.: Covering a Set of Points with a Minimum Number of Lines. Technical Report LU-CS-TR:2005-236, ISSN 1650-1276 Report 156, Also at: http://www.cs.lth.se/home/Magdalene_Grantson/line.pdf

  4. Guibas, L., Overmars, M., Robert, J.: The Exact Fitting Problem in Higher Dimensions. Computational Geometry: Theory and Applications 6, 215–230 (1996)

    MATH  MathSciNet  Google Scholar 

  5. Johnson, D.: Approximation Algorithms for Combinatorial Problems. J. of Comp. Syst. Sci. 9, 256–278 (1974)

    Article  MATH  Google Scholar 

  6. Kumar, V., Arya, S., Ramesh, H.: Hardness of Set Cover With Intersection 1. In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, pp. 624–635. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  7. Langerman, S., Morin, P.: Covering Things with Things. In: Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 662–673. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Megiddo, N., Tamir, A.: On the Complexity of Locating Linear Facilities in the Plane. Operation Research Letters 1, 194–197 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sarnak, N., Tarjan, R.E.: Planar Point Location Using Persistent Search Tree. Comm. ACM 29, 669–679 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Grantson, M., Levcopoulos, C. (2006). Covering a Set of Points with a Minimum Number of Lines. In: Calamoneri, T., Finocchi, I., Italiano, G.F. (eds) Algorithms and Complexity. CIAC 2006. Lecture Notes in Computer Science, vol 3998. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11758471_4

Download citation

  • DOI: https://doi.org/10.1007/11758471_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34375-2

  • Online ISBN: 978-3-540-34378-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics