Skip to main content

An ICA Learning Algorithm Utilizing Geodesic Approach

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3971))

Included in the following conference series:

  • 107 Accesses

Abstract

This paper presents a novel independent component analysis algorithm that separates mixtures using serially updating geodesic method. The geodesic method is derived from the Stiefel manifold, and an on-line version of this method that can directly treat with the unwhitened observations is obtained. Simulation of artificial data as well as real biological data reveals that our proposed method has fast convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Jutten, C., Herault, J.: Blind Separation of Sources: An Adaptive Algorithm Based on Neuromimetic Architecture. Signal Processing 24, 1–10 (1991)

    Article  MATH  Google Scholar 

  2. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, New York (2001)

    Book  Google Scholar 

  3. Douglas, C.: Self-stabilized Gradient Algorithms for Blind Source Separation with Orthogonality Constrains. IEEE Transactions on Signal Processing 11, 1490–1497 (2000)

    Google Scholar 

  4. Manton, H.: Optimization Algorithms Exploiting Unitary Constrains. IEEE Tran. on Signal Processing 50, 635–650 (2002)

    Article  MathSciNet  Google Scholar 

  5. Edelman, A., Arias, T., Smith, S.T.: The Geometry of Algorithms with Orthogonality Constraints. J. Matrix Anal. Appl. 20, 783–787 (1998)

    Google Scholar 

  6. Douglas, C., Amari, S.: Natural Gradient Adaptation in Unsupervised Adaptive Filtering. In: Haykin, S. (ed.) Blind Source Separation, pp. 13–61. Wiley, New York (2000)

    Google Scholar 

  7. Fiori, S.: Qusi-geodesic Neural Learning Algorithms Over the Orthogonal Group: A Tutorial. Journal of Machine Learning Research 1, 1–42 (2005)

    Google Scholar 

  8. Edelman, A., Arias, T.A., Smith, S.T.: The Geometry of Algorithms with Orthogonality Constraints. Matrix Anal. Applicant. 20, 303–353 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Plumbley, D.: Algorithms for Nonnegative Independent Component Analysis. IEEE Transactions on Neural Networks 14, 534–543 (2003)

    Article  Google Scholar 

  10. Nishimori, Y.: Learning Algorithm for ICA by Geodesic Flows on Orthogonal Group. In: PIJC Neural Networks, Washington, DC, vol. 2, pp. 933–988 (1999)

    Google Scholar 

  11. Nishimori, Y., Akaho, S.: Learning Algorithms Utilizing Quasi-geodesic Flows on the Stiefel Manifold. Neurocomputing 67, 106–135 (2005)

    Article  Google Scholar 

  12. Cardoso, L.: Equivariant Aadaptive Source Separation. IEEE Trans. on Signal Processing 44, 3017–3030 (1996)

    Article  MathSciNet  Google Scholar 

  13. Choi, S., Cichocki, A., Amari, S.: Flexible Independent Component Analysis. Neural Networks for Signal Processing VIII, 83–92 (1998)

    Google Scholar 

  14. Girolami, M.: Self-Organising Neural Networks. Independent Component Analysis and Blind Source Separation. Springer, London (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yu, T., Shao, HZ., Peng, QC. (2006). An ICA Learning Algorithm Utilizing Geodesic Approach. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_162

Download citation

  • DOI: https://doi.org/10.1007/11759966_162

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34439-1

  • Online ISBN: 978-3-540-34440-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics