Skip to main content

Robust Data Clustering in Mercer Kernel-Induced Feature Space

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3971))

Included in the following conference series:

  • 112 Accesses

Abstract

In this paper, we focus on developing a new clustering method, robust kernel-based deterministic annealing (RKDA) algorithm, for data clustering in mercer kernel-induced feature space. A nonlinear version of the standard deterministic annealing (DA) algorithm is first constructed by means of a Gaussian kernel, which can reveal the structure in the data that may go unnoticed if DA is performed in the original input space. After that, a robust pruning method, the maximization of the mutual information against the constrained input data points, is performed to phase out noise and outliers. The good aspects of the proposed method for data clustering are supported by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blahut, R.E.: Computation of Channel Capacity and Rate-Distortion Functions. IEEE Trans. on Information Theory 18(4), 460–473 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cristianin, N., Shawe-Taylar, J.: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Muller, K.R., Mike, S., Ratsch, G., Tsuda, K., Scholkopf, B.: An Introduction to Kernel Based Learning Algorithms. IEEE Trans. on Neural Networks 12(2), 181–201 (2001)

    Article  Google Scholar 

  4. Rose, K., Gurewitz, E., Fox, G.C.: Statistical Mechanics and Phase Transitions in Clustering. Physical Review Letters 65(8), 945–948 (1990)

    Article  Google Scholar 

  5. Rose, K.: Deterministic Annealing for Clustering, Compression, Classification, Regression, and Related Optimization Problems. Processings of the IEEE 86(11), 2210–2239 (1998)

    Article  Google Scholar 

  6. Scholkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

    Google Scholar 

  7. Song, Q.: A Robust Information Clustering Algorithm. Neural Computation 17(12), 2672–2698 (2005)

    Article  MATH  Google Scholar 

  8. Wu, K.L., Yang, M.S.: Alternative C-Means Clustering Algorithms. Pattern Recognition 35(10), 2267–2278 (2002)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yang, X., Song, Q., Er, MJ. (2006). Robust Data Clustering in Mercer Kernel-Induced Feature Space. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_182

Download citation

  • DOI: https://doi.org/10.1007/11759966_182

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34439-1

  • Online ISBN: 978-3-540-34440-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics