Skip to main content

Training RBF Neural Network with Hybrid Particle Swarm Optimization

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3971))

Included in the following conference series:

Abstract

The particle swarm optimization (PSO) has been used to train neural networks. But the particles collapse so quickly that it exits a potentially dangerous stagnation characteristic, which would make it impossible to arrive at the global optimum. In this paper, a hybrid PSO with simulated annealing and Chaos search technique (HPSO) is adopted to solve this problem. The HPSO is proposed to train radial basis function (RBF) neural network. Benchmark function optimization and dataset classification problems (Iris, Glass, Wine and New-thyroid) experimental results demonstrate the effectiveness and efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, Perth, Australia, pp. 1942–1948 (1995)

    Google Scholar 

  2. Eberhart, R.C., Shi, Y.: Comparison between Genetic Algorithm and Particle Swarm Optimization. In: Proceedings of 7th Annual Conference on Evolutionary Computation, pp. 611–616 (1998)

    Google Scholar 

  3. Kennedy, J., Eberhart, R.C., Shi, Y.: Swarm Intelligence. Morgan Kaufmann Publishers, Inc., San Francisco (2001)

    Google Scholar 

  4. Broomhead, D., Lowe, D.: Multivariable Functional Interpolation and Adaptive Networks. Complex Systems 2, 321–355 (1998)

    MathSciNet  Google Scholar 

  5. Catelani, M., Fort, A.: Fault Diagnosis of Electronic Analog Circuits Using a Radial Basis Function Network Classifier. Measurement 28, 147–158 (2000)

    Article  Google Scholar 

  6. Kennedy, J.: Bare Bones Particle Swarms. In: Proceedings of IEEE Swarm Intelligence Symposium, pp. 80–87 (2003)

    Google Scholar 

  7. Cristian, T.I.: The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection. Information Processing Letters 85(6), 317–325 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Zhang, T., Wang, H.W., Wang, Z.C.: Mutative Scale Chaos Optimization Algorithm and Its Application. Control and Decision 14(3), 285–288 (1999)

    MATH  Google Scholar 

  9. Moon Francis, C.: Chaotic and Fractal Dynamics, an Introduction for Applied Scientists and Engineers. John Wiley & Sons, New York (1992)

    Book  Google Scholar 

  10. Kirkpatrick, S., Gelat, J.C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 4596(220), 671–680 (1983)

    Article  Google Scholar 

  11. Liu, Y., Qing, Z., Shi, Z.W.: Training Radial Basis Function Network with Particle swarms. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 317–322. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Blake, C., Keogh, E., Merz, C.J.: UCI Repository of Machine Learning Databases (2003), www.ic.uci.edu/~mlearn/MLRepository.htm

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gao, H., Feng, B., Hou, Y., Zhu, L. (2006). Training RBF Neural Network with Hybrid Particle Swarm Optimization. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3971. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11759966_86

Download citation

  • DOI: https://doi.org/10.1007/11759966_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34439-1

  • Online ISBN: 978-3-540-34440-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics