Skip to main content

Motion-Alert: Automatic Anomaly Detection in Massive Moving Objects

  • Conference paper
Intelligence and Security Informatics (ISI 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 3975))

Included in the following conference series:

  • 2061 Accesses

Abstract

With recent advances in sensory and mobile computing technology, enormous amounts of data about moving objects are being collected. With such data, it becomes possible to automatically identify suspicious behavior in object movements. Anomaly detection in massive sets of moving objects has many important applications, especially in surveillance, law enforcement, and homeland security.

Due to the sheer volume of spatiotemporal and non-spatial data (such as weather and object type) associated with moving objects, it is challenging to develop a method that can efficiently and effectively detect anomalies in complex scenarios. The problem is further complicated by the fact that anomalies may occur at various levels of abstraction and be associated with different time and location granularities. In this paper, we analyze the problem of anomaly detection in moving objects and propose an efficient and scalable classification method, Motion-Alert, which proceeds with the following three steps.

  1. 1

    Object movement features, called motifs, are extracted from the object paths. Each path consists of a sequence of motif expressions, associated with the values related to time and location.

  2. 2

    To discover anomalies in object movements, motif-based generalization is performed that clusters similar object movement fragments and generalizes the movements based on the associated motifs.

  3. 3

    With motif-based generalization, objects are put into a multi-level feature space and are classified by a classifier that can handle high-dimensional feature spaces.

We implemented the above method as one of the core components in our moving-object anomaly detection system, motion-alert. Our experiments show that the system is more accurate than traditional classification techniques.

The work was supported in part by the U.S. National Science Foundation NSF IIS-03-08215/05-13678. Any opinions, findings, and conclusions or recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the funding agencies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Aggarwal, C., Han, J., Wang, J., Yu, P.S.: A framework for projected clustering of high dimensional data streams. In: VLDB 2004 (2004)

    Google Scholar 

  2. Agrawal, R., Psaila, G., Wimmers, E.L., Zait, M.: Querying shapes of histories. In: VLDB 1995 (1995)

    Google Scholar 

  3. Agrawal, R., Srikant, R.: Fast algorithm for mining association rules in large databases. In: Research Report RJ 9839, IBM Almaden Research Center (1994)

    Google Scholar 

  4. Bagnall, A.J., Janacek, G.J.: Clustering time series from arma models with clipped data. In: KDD 2004 (2004)

    Google Scholar 

  5. Benetis, R., Jensen, C.S., Karciauskas, G., Saltenis, S.: Nearest neighbor and reverse nearest neighbor queries for moving objects. In: Proc. IDEAS (2002)

    Google Scholar 

  6. Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House (1999)

    Google Scholar 

  7. Campbell, R.J., Flynn, P.J.: A survey of free-form object representation and recognition techniques. Computer Vision and Image Understanding 81, 166–210 (2001)

    Article  MATH  Google Scholar 

  8. Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Software available at, http://www.csie.ntu.edu.tw/~cjlin/libsvm

  9. Chon, H.D., Agrawal, D., Abbadi, A.E.: Range and knn query processing for moving objects in grid model. ACM/Kluwer MONET (2003)

    Google Scholar 

  10. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines: and Other Kernel-Based Learning Methods. Cambridge Univ. Press, Cambridge (2000)

    Google Scholar 

  11. Forsyth, D.A., Ponce, J.: Computer Vision - A Modern Approach. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  12. Frentzos, E., Gratsias, K., Pelekis, N., Theodoridis, Y.: Nearest neighbor search on moving object trajectories. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 328–345. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Gaffney, S., Smyth, P.: Trajectory clustering with mixtures of regression models. In: KDD 1999 (1999)

    Google Scholar 

  14. Güting, G.H., Schneider, M.: Moving Objects Databases. Morgan Kaufmann, San Francisco (2005)

    Google Scholar 

  15. Güting, R.H., et al.: A foundation for representing and querying moving objects. In: ACM Trans. Database Systems, TODS (March 2000)

    Google Scholar 

  16. Iwerks, G.S., Samet, H., Smith, K.: Continuous k-nearest neighbor queries for continuously moving points with updates. In: VLDB 2003 (2003)

    Google Scholar 

  17. Jensen, C.S., Lin, D., Ooi, B.C.: Query and update efficient b+-tree based indexing of moving objects. In: VLDB 2004 (2004)

    Google Scholar 

  18. Kalnis, P., Mamoulis, N., Bakiras, S.: On discovering moving clusters in spatio-temporal data. In: Bauzer Medeiros, C., Egenhofer, M.J., Bertino, E. (eds.) SSTD 2005. LNCS, vol. 3633, pp. 364–381. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Koperski, K., Han, J.: Discovery of spatial association rules in geographic information databases. In: Egenhofer, M.J., Herring, J.R. (eds.) SSD 1995. LNCS, vol. 951, pp. 47–66. Springer, Heidelberg (1995)

    Google Scholar 

  20. Mokbel, M.F., Xiong, X., Aref, W.G.: Sina: Scalable incremental processing of continuous queries in spatio-temporal databases. In: SIGMOD 2004 (2004)

    Google Scholar 

  21. Patel, J.M., Chen, Y., Chakka, V.P.: Stripes: an efficient index for predicted trajectories. In: SIGMOD 2004 (2004)

    Google Scholar 

  22. Saltenis, S., Jensen, C., Leutenegger, S., Lopez, M.: Indexing the positions of continuously moving objects. In: SIGMOD 2000 (2000)

    Google Scholar 

  23. Shahabi, C., Kolahdouzan, M., Sharifzadeh, M.: A road network embedding technique for k-nearest neighbor search in moving object databases. In: GeoInformatica (2003)

    Google Scholar 

  24. Shekhar, S., Huang, Y.: Discovering spatial co-location patterns: A summary of results. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 236. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  25. Song, Z., Roussopoulos, N.: K-nearest neighbor search for moving query point. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 79. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  26. Tao, Y., Papadias, D., Shen, Q.: Continuous nearest neighbor search. In: VLDB 2002 (2002)

    Google Scholar 

  27. Tao, Y., Papadias, D., Sun, J.: The tpr*-tree: An optimized spatio-temporal access method for predictive queries. In: VLDB 2003 (2003)

    Google Scholar 

  28. Tsoukatos, I., Gunopulos, D.: Efficient mining of spatiotemporal patterns. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001. LNCS, vol. 2121, p. 425. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  29. Xiong, X., Mokbel, M.F., Aref, W.G.: Sea-cnn: Scalable processing of continuous k-nearest neighbor queries in spatio-temporal databases. In: ICDE 2005 (2005)

    Google Scholar 

  30. Yoo, J.S., Shekhar, S.: A partial join approach to mining co-location patterns. In: GIS 2004 (2004)

    Google Scholar 

  31. Yu, X., Pu, K.Q., Koudas, N.: Monitoring k-nearest neighbor queries over moving objects. In: ICDE 2005 (2005)

    Google Scholar 

  32. Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.: Location-based spatial queries. In: SIGMOD 2003 (2003)

    Google Scholar 

  33. Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH: an efficient data clustering method for very large databases. In: SIGMOD 1996 (1996)

    Google Scholar 

  34. Zhang, X., Mamoulis, N., Cheung, D.W., Shou, Y.: Fast mining of spatial collocations. In: KDD 2004 (2004)

    Google Scholar 

  35. Zu, Y., Wang, C., Gao, L., Wang, X.S.: Supporting movement pattern queries in user-specified scales. IEEE Trans. Knowledge and Data Engineering (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, X., Han, J., Kim, S. (2006). Motion-Alert: Automatic Anomaly Detection in Massive Moving Objects. In: Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang, FY. (eds) Intelligence and Security Informatics. ISI 2006. Lecture Notes in Computer Science, vol 3975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760146_15

Download citation

  • DOI: https://doi.org/10.1007/11760146_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34478-0

  • Online ISBN: 978-3-540-34479-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics