Abstract
Research on techniques for effective bioterrorism surveillance is limited by the availability of data from actual bioterrorism incidents. This research explores the potential contribution of naturally occurring incidents, such as Florida wildfires, as reasonable facsimiles for airborne bioterrorist attacks. Hospital discharge data on respiratory illnesses are analyzed to uncover patterns that might resemble the effects of an aerosolized biological or chemical attack. Previous research [3] is extended by (1) utilizing Geographic Information Systems (GIS) to introduce appropriate spatial data and (2) increasing the sophistication of the spatial analysis by applying the retrospective space-time permutation model available through SaTScanTM. Initial results are promising and lead to a confirmation that Florida wildfires are potentially interesting surrogates for aerosolized biochemical terrorist attacks. Research implications are discussed in reference to the on-going development of effective bioterrorism surveillance systems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alexander, D.A., Klein, S.: Biochemical Terrorism: Too Awful to Contemplate, Too Serious to Ignore. British Journal of Psychiatry 183, 491–497 (2003)
Al-Rawi, K.R., Casinova, J.L., Romo, A.: IFEMS: a new approach for monitoring wild fire evolution with NOAA-AVHRR imagery. International Journal of Remote Sensing 22(10), 2033–2042 (2001)
Berndt, D.J., Bhat, S., Fisher, J.W., Hevner, A.R., Studnicki, J.: Data Analytics for Bioterrorism Surveillance. In: Chen, H., Moore, R., Zeng, D.D., Leavitt, J. (eds.) ISI 2004. LNCS, vol. 3073, pp. 17–27. Springer, Heidelberg (2004)
Berndt, D.J., Fisher, J., Hevner, A., Studnicki, J.: Data Warehousing and Quality Assurance. IEEE Computer 34(12), 33–42 (2001)
Berndt, D.J., Hevner, A., Studnicki, J.: The CATCH Data Warehouse: Support for Community Health Care Decision Making. Decision Support Systems 35, 367–384 (2003)
Berndt, D.J., Hevner, A.R., Studnicki, J.: Bioterrorism surveillance with real-time data warehousing. In: Chen, H., Miranda, R., Zeng, D.D., Demchak, C.C., Schroeder, J., Madhusudan, T. (eds.) ISI 2003. LNCS, vol. 2665, pp. 322–335. Springer, Heidelberg (2003)
Cambel, P.: Current Population Reports: Population Projections: 1995-2025. US Bureau of the Census (1997)
Burkom, H.S., Elbert, Y., Feldman, A., Lin, J.: Role of Data Aggregation in Biosurveillance Detection Strategies with Applications from ESSENSE. MMWR 53, 67–73 (2004)
Dwass, M.: Modified randomization tests for nonparametric hypothesis. Annals of Mathematical Statistics 28, 181–187 (1957)
Florida Wildfires Threaten all of Flagler County, CNN.com 3 (July 1998), http://www.cnn.com/US/9807/03/florida.fires.01/
Grahm-Rowe: Intelligence analysis software could predict attacks. New Scientist (2001)
Green, M.S., Kaufmann, Z.: Surveillance for Early Detection Monitoring of Infectious Disease Outbreak Associated with Bioterrorism. The Israeli Medical Association Journal 4, 503–506 (2002)
Greenfield, R.A., Brown, B.R., Hutchins, J.B., Iandolo, J.J., Jackson, R., Slater, L.N., Bronze, M.S.: Microbiologica, Biological, and Chemical Weapons of Warfare and Terrorism. The American Journal of Medical Sciences 323(6), 326–340 (2002)
Hearne, S.A., Segal, L.M.: Leveraging the Nation’s Bioterrorism Investments: Foundation Efforts to Ensure A Revitalized Public Health System. Health Affairs 22(4), 230–234 (2003)
Heffernan, R., Mostashari, F., Das, D., Karpati, A., Kulldorff, M., Weiss, D.: Syndromic Surveillance in Public Health Practice: The New York City emergency department system. Emerging Infectious Diseases 10, 858–864 (2004)
Huang, L., Kulldorff, M., Kassen, A.: A Spatial Scan Statistic for Survival Data. Manuscript (2005)
Jung, I., Kulldorff, M., Klassen, A.: A spatial scan statistic for ordinal data. Manuscript (2005)
Kleinman, K., Abrams, A., Kulldorff, M., Platt, R.: A model-adjusted space-time scan statistic with an application to syndromic surveillance. Epidemiology and Infectious Disease 133, 409–419 (2003)
Krieger, N., Weterman, P., Chen, J., May-Jabeen, S.: Zip Code Caveat: Bias Due to Spatio-Temporal Mismatches Between Zip Codes and US Census – Defined Geographic Areas – The Public Health Disparities Project. American Journal of Public Health 92(7), 1100–1103 (2002)
Kulldorff, M.: A spatial scan statistic. Communications in Statistics: Theory and Methods 26, 1481–1496 (1997)
Kulldorff, M.: Prospective time-periodic geographical disease surveillance using a scan statistic. Journal of the Royal Statistical Society, 61–72 (2001)
Kulldorff, M., Athas, W., Feuer, E., Miller, B., Key, C.: Evaluating Cluster Alarms: A space-time scan statistic and brain cancer in Los Alamos. American Journal of Public Health 88, 1377–1380 (1998)
Kulldorff, M., Heffernan, R., Hartman, J., Assuncao, R.M., Mostashari, F.: A space-time permutation statistic for the early detection of disease outbreaks. PLoS Medicine 2, 216–224 (2005)
Kulldorff, M.: Information Management Services, Inc.: SaTScanTM. Software for spatial and space-time scan statistics (computer program). Version 2.1 Bethesda, MD: National Cancer Institute (2005), http://www.satscan.org
Kulldorff, M., Mostashari, F., Duczmal, L., Yih, K., Kleinman, K., Platt, R.: Multivariate spatial scan statistics for disease surveillance. Manuscript (2005)
Kulldorff, K., Nagarwalla, N.: Spatial disease clusters: Detection and Inference. Statistics in Medicine 14, 799–810 (1995)
Kulldorff, K., Lazarus, R., Platt, R.: A generalized linear mixed models approach for detecting incident clusters of disease in small areas with application to biological terrorism. American Journal of Epidemiology, 217–224 (2004)
Minnesota Department of Health: Syndromic Surveillance: a New Tool to Detect Disease Outbreaks. Disease Control Newsletter 32, 16–17 (2004)
Lombardo, J., Burkom, H., Elbert, E., Magruder, S., Lewis, S.H., Loschen, W., Sari, J., Sniegoski, C., Wojcik, R., Pavilin, J.: A Systems Overview of the Electronic Surveillance System for the Early Notification of Community-Based Epidemics (ESSENCE II). Journal of Urban Health 80(2), 32–41 (2003)
Mandl, K., Overhage, J., Wagner, M., Lober, W., Sebastiani, P., Mostashari, F., Pavlin, J., Gestland, P., Tradwell, T., Koki, E., Hutwagner, L., Buckeridge, D., Aller, R., Grannis, S.: Implementing Synromic Surveillance: a Practical Guide Informed by Early Experience. Journal of the American Medical Informatics Association 11(2), 141–150 (2004)
Mostashari, F., Hartman, J.: Syndromic Surveillance: a Local Perspective. Journal of Urban Health 80(2) (2003)
Mostashari, F., Kulldorff, M., Hartman, J.J., Miller, J.R., Kulasekera, V.: Dead bird clustering: A potential early warning system for West Nile virus activity. Emerging Infectious Diseases 9, 641–646 (2003)
Nordin, J.D., Goodman, M.J., Kulldorff, M., Ritzwoller, D.P., Abrams, A.M., Kleinman, K., Levitt, M.J., Donahue, J., Platt, R.: Simulated anthrax attacks and syndromic surveillance. Emerging Infectious Diseases 11, 1394–1398 (2005)
Ostroff, S.: The CDC and Emergency Preparedness for the Elderly and Disabled: Testimonly before the Senate Special Committee on Aging – NY Field Hearing, February 22 (2002), http://www.cdc.gov/mmwr/preview/mmwrhtml/00056377.htm
SaTScanTM Version History. Viewed November 7, Version 6. October 24 (2005), http://www.satscan.org/techdoc.html
SaTScanTM web site. Viewed November 7 (2005), http://www.satscan.org
Surveillance of Morbidity during Wildfires – Central Florida 1998. In: MMWR, vol. 48(40) (1999)
United States Geological Survey (USGS), Geographic Information Systems (GIS) Poster, http://www.erg/isgs/gpv/isb/pubs/gis_poster/
Wildfires burn 70,000 acres in Everglades, April 19 (1999), http://www.cnn.com
Wildfires Fact Sheet: Health Threat from Wildfire Smoke. Department of Health and Human Services. Center for Disease Control and Prevention (2003), www.bt/cdc/gov/firesafety
Yih, W.K., Caldwell, B., Harmon, R., Kleinman, K., Lazarus, K., Lazarus, R., Nelson, A., Nordin, J., Rehm, B.: National Bioterrorism Syndromic Surveillance Demonstration Program. MMWR 53, 43–46 (2004)
Yih, K., Abrams, A., Kleinman, K., Kulldorff, M., Nordin, J., Platt, R.: Ambulatory-care diagnosis as potential indicators of outbreaks of gastrointestinal illness – Minnesota. MMWR (suppl. 54), 157–162 (2004)
Zeng, D., Hsinchun, C., Lynch, C., Edson, M., Gotham, I.: Infectious Disease Informatics and Outbreak Detection. In: Medical Informatics, Ch. 13, pp. 359–395 (2006)
Zeng, X., Wagner, M.: Modeling Effects of Epidemics on Routinely Collected Data. Journal of the American Medical Informatics Association, (Suppl. 9), s17–s22 (2002)
ZipCode Data. Great Data Frequently Asked Questions, http://www.greatdata.com/zipcodefaqs.php
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Griffiths, J.L., Berndt, D.J., Hevner, A.R. (2006). Naturally Occurring Incidents as Facsimiles for Biochemical Terrorist Attacks. In: Mehrotra, S., Zeng, D.D., Chen, H., Thuraisingham, B., Wang, FY. (eds) Intelligence and Security Informatics. ISI 2006. Lecture Notes in Computer Science, vol 3975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760146_20
Download citation
DOI: https://doi.org/10.1007/11760146_20
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34478-0
Online ISBN: 978-3-540-34479-7
eBook Packages: Computer ScienceComputer Science (R0)