Skip to main content

Extreme Learning Machine for Predicting HLA-Peptide Binding

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3973))

Included in the following conference series:

  • 2290 Accesses

Abstract

Machine learning techniques have been recognized as powerful tools for learning from data. One of the most popular learning techniques, the Back-Propagation (BP) Artificial Neural Networks, can be used as a computer model to predict peptides binding to the Human Leukocyte Antigens (HLA). The major advantage of computational screening is that it reduces the number of wet-lab experiments that need to be performed, significantly reducing the cost and time. A recently developed method, Extreme Learning Machine (ELM), which has superior properties over BP has been investigated to accomplish such tasks. In our work, we found that the ELM is as good as, if not better than, the BP in term of time complexity, accuracy deviations across experiments, and – most importantly – prevention from over-fitting for prediction of peptide binding to HLA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Janeway, C.A., Travers, P., Walport, M., Shlomchik, M.: Immunobiology. Garland Publishing, New York (2001)

    Google Scholar 

  2. Williams, T.M.: Human Leukocyte Antigen Gene Polymorphism and the Histocompatibility Laboratory. J. Mol. Diagn. 3, 98–104 (2001)

    Article  Google Scholar 

  3. Marsh, S.G.E., et al.: Nomenclature for Factors of the HLA System. Tissue Antigens 65, 301–369 (2005)

    Article  Google Scholar 

  4. Brusic, V., Rudy, G., Honeyman, G., Hammer, J., Harrison, L.C.: Prediction of MHC Class II-binding Peptides Using an Evolutionary Algorithm and Artificial Neural Network. Bioinformatics 14, 121–130 (1998)

    Article  Google Scholar 

  5. Honeyman, M.C., Brusic, V., Stone, N.L., Harrison, L.C.: Neural Network-based Prediction of Candidate T-cell Epitopes. Nat. Biotech. 16, 966–969 (1998)

    Article  Google Scholar 

  6. Zhang, G.L., Khan, A.M., Srinivasan, K.N., August, J.T., Brusic, V.: Neural Models for Predicting Viral Vaccine Targets. J. Bioinform. Comput. Biol. 3(5), 1207–1225 (2005)

    Article  Google Scholar 

  7. Brusic, V., Petrovsky, N., Zhang, G.L., Bajic, V.B.: Prediction of Promiscuous Peptides That Bind HLA Class I Molecules. Immu. Cell. Biol. 80, 280–285 (2002)

    Article  Google Scholar 

  8. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks. In: IJCNN 2004 (2004)

    Google Scholar 

  9. Schueler-Furman, O., Altuvia, Y., Sette, A., Margalit, H.: Structure-based Prediction of Binding Peptides to MHC Class I Molecules: Application to a Broad Range of MHC Alleles. Protein Sci. 9, 1838–1846 (2000)

    Article  Google Scholar 

  10. Peters, B., Tong, W., Sidney, J., Sette, A., Weng, Z.: Examining the Independent Binding Assumption for Binding of Peptide Epitopes to MHC-I Molecules. Bioinformatics 19, 1765–1772 (2003)

    Article  Google Scholar 

  11. Savoie, C.J., Kamikawaji, N., Sasazuki, T., Kuhara, S.: Use of BONSAI Decision Trees for the Identification of Potential MHC Class I Peptide Epitope Motifs. In: Pac. Symp. Biocomput., pp. 182–189 (1999)

    Google Scholar 

  12. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley Interscience, Hoboken (2001)

    MATH  Google Scholar 

  13. Zurada, J.M.: Introduction to Artificial Neural Systems. PWS Publishing Co, St. Paul MN USA (1999)

    Google Scholar 

  14. Yu, K., Petrovsky, N., Schönbach, C., Koh, J.Y., Brusic, V.: Methods for Prediction of Peptide Binding to MHC Molecules: A Comparative Study. Mol. Med. 8, 137–148 (2002)

    Google Scholar 

  15. Donnes, P., Elofsson, A.: Prediction of MHC Class I Binding Peptides Using SVMHC. BMC Bioinformatics 3, 25–38 (2002)

    Article  Google Scholar 

  16. Hattotuwagama, C.K., Guan, P., Doytchinova, I.A., Zygouri, C., Flower, D.R.: Quantitative Online Prediction of Peptide Binding to the Major Hstocompatibility Complex. J. Mol. Graph Model 22, 195–207 (2004)

    Article  Google Scholar 

  17. Brusic, V., Bajic, V.B., Petrovsky, N.: Computational Methods for Prediction of T-cell Epitopes—A Framework for Modelling, Testing, and Applications. Methods 34, 436–443 (2004)

    Article  Google Scholar 

  18. IMGT/HLA Sequence Database Rel. 2.11.0, http://www.ebi.ac.uk/imgt/hla/

  19. Albert, A.E.: Regression and the Moore-Penrose Pseudoinverse. Academic Press, New York (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Handoko, S.D., Keong, K.C., Soon, O.Y., Zhang, G.L., Brusic, V. (2006). Extreme Learning Machine for Predicting HLA-Peptide Binding. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760191_105

Download citation

  • DOI: https://doi.org/10.1007/11760191_105

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34482-7

  • Online ISBN: 978-3-540-34483-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics