Abstract
Automatic detection of end-to-end network performance anomalies is important to efficient network management and optimization. We present an end-to-end network performance anomalies detection method, based on characterizing of the dynamic statistical properties of RTT normality. The experiment on real Internet end-to-end path RTT data shows that, the proposed method is accurate in detecting performance anomalies, it can successfully detect about 96.25% anomalies in the experiment.
This work was supported by National Natural Science Foundation of China under grant 60273070, 60473031 and 60403031, the National High-Technology Program of China (863) under grant 2005AA121560, the Hunan Provincial Natural Science Foundation of China under grant 05JJ30116.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Li, B.C., Yin, H.J.: Face Recognition Using RBF Neural Networks and Wavelet Transform. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 105–111. Springer, Heidelberg (2005)
Ho, L., Cavuto, D., Papavassiliou, S.: Adaptive/Automated Detection of Service Anomalies in Transaction WANs: Network Analysis, Algorithms, Implementation, and Deployment. IEEE Journal on Selected Areas in Communications 18(5), 744–757 (2000)
Pu, X.R., Yi, Z., Zheng, Z.M., Zhou, W., Ye, M.: Face Recognition Using Fisher Non-negative Matrix Factorization with Sparseness Constraints. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 112–117. Springer, Heidelberg (2005)
Sun, C.Y., Feng, C.B.: Neural Networks for Nonconvex Nonlinear Programming Problems: A Switching Control Approach. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 694–699. Springer, Heidelberg (2005)
Platt, J.: A Resource-Allocating Network for Function Interpolation. Neural Computation 3(2), 213–225 (1991)
Hao, Z.F., Liu, B., Yang, X.W., Liang, Y.C., Zhao, F.: Twi-Map Support Vector Machine for Multi-classification Problems. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 869–874. Springer, Heidelberg (2005)
Guo, C.G., Anthony, K.: An Optimal Neural-Network Model for Learning Posterior Probability Functions from Observations. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 370–376. Springer, Heidelberg (2004)
Lu, W., Lu, H.T., Chung, F.L.: Subsampling-Based Robust Watermarking Using Neural Network Detector. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 801–806. Springer, Heidelberg (2005)
Manikopoulos, C., Papavassiliou, S.: Network Intrusion and Fault Detection: A Statistical Anomaly Approach. IEEE Communications Magazine 40(10), 76–82 (2002)
Han, M., Fan, M.M., Xi, J.H.: Study of Nonlinear Multivariate Time Series Prediction Based on Neural Networks. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 618–623. Springer, Heidelberg (2005)
Yang, Y.Q., Cao, J.D., Zhu, D.Q.: A Study of Portfolio Investment Decision Method Based on Neural Network. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 976–981. Springer, Heidelberg (2004)
McGregor, A., Braun, H.-W.: The NLANR Network Analysis Infrastructure. IEEE Communications Magazine 38(5), 122–128 (2000)
Sun, F.C., Zhang, H.: Neuro-Fuzzy Hybrid Position/Force Control for a Space Robot with Flexible Dual-Arms. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3174, pp. 13–18. Springer, Heidelberg (2004)
Liu, J., Yuan, D.F., Ci, S., Zhong, Y.J.: A New QoS Routing Optimal Algorithm in Mobile Ad Hoc Networks Based on Hopfield Neural Network. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3498, pp. 343–348. Springer, Heidelberg (2005)
Li, G., Patrick, W.: An Analysis of Network Performance Degradation Induced by Workload Fluctuations. IEEE/ACM Transaction on Network 3(4), 433–440 (1995)
Wen, Y.M., Lu, B.L.: A Hierarchical and Parallel Method for Training Support Vector Machines. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 881–886. Springer, Heidelberg (2005)
Li, S.W., Li, S.R.: Hopf Bifurcation in a Single Inertial Neuron Model with a Discrete Delay. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 327–332. Springer, Heidelberg (2005)
Hajji, H., Far, B.H.: Continuous Network Monitoring for Fast Detection of Performance Problems. In: Proceedings of International Symposium on Performance Evaluation of Computer and Telecommunication Systems (2001)
Zhang, J., Liao, X.F., Li, C.D., Lu, A.W.: A Further Result for Exponential Stability of Neural Networks with Time-Varying Delays. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 120–125. Springer, Heidelberg (2005)
Jiang, M.H., Shen, Y., Liu, M.Q.: Global Exponential Stability of Non-autonomous Neural Networks with Variable Delay. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 108–113. Springer, Heidelberg (2005)
Juan, M., Garcia-Teodoro, P.: Anomaly Detection Methods in Wired Networks: A Survey and Taxonomy. Computer Communications 27(3), 1569–1584 (2004)
Zeng, Z.G., Chen, B.S., Wang, Z.F.: Globally Attractive Periodic State of Discrete-Time Cellular Neural Networks with Time-Varying Delays. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3496, pp. 282–287. Springer, Heidelberg (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, W., Zhang, D., Yang, J., Xie, G., Wang, L. (2006). A Resource Allocating Neural Network Based Approach for Detecting End-to-End Network Performance Anomaly. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760191_27
Download citation
DOI: https://doi.org/10.1007/11760191_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34482-7
Online ISBN: 978-3-540-34483-4
eBook Packages: Computer ScienceComputer Science (R0)