Skip to main content

Local Volatility Function Approximation Using Reconstructed Radial Basis Function Networks

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3973))

Included in the following conference series:

Abstract

Modelling volatility smile is very important in financial practice for pricing and hedging derivatives. In this paper, a novel learning method to approximate a local volatility function from a finite market data set is proposed. The proposed method trains a RBF network with fewer volatility data and finds an optimized network through option pricing error minimization. Numerical experiments are conducted on S&P 500 call option market data to illustrate a local volatility surface estimated by the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andersen, L.B.G., Brotherton-Ratcliffe, R.: The Equity Option Volatility Smile: An Implicit Finite Difference Approach. Journal of Computational Finance 1(2) (1997)

    Google Scholar 

  2. Avellaneda, M., Friedman, M., Holmes, C., Samperi, D.: Calibrating Volatility Surfaces via Relative Entropy Minimazation. Applied Mathematical Finances 4, 37–64 (1997)

    Article  MATH  Google Scholar 

  3. Black, F., Scholes, M.: The Pricing of Options and Corporate Liabilities. Journal of Political Economy 81, 637–659 (1973)

    Article  Google Scholar 

  4. Coleman, T.F., Li, Y., Verma, A.: Reconstructing the Unknown Local Volatility Function. The Journal of Computational Finance 2(3) (1999)

    Google Scholar 

  5. Dupire, B.: Pricing with a Smile. Risk 7, 18–20 (1994)

    Google Scholar 

  6. Han, G.S., Lee, D., Lee, J.: Estimating The Yield Curve Using Calibrated Radial Basis Function Networks. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 885–890. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  7. Haykin, S.: Neural Networks: a Comprehensive Foundation. Prentice-Hall, New York (1999)

    MATH  Google Scholar 

  8. Hull, J., White, A.: The Pricing of Options on Assets with Stochastic Volailities. Journal of Finance 3, 281–300 (1987)

    Article  Google Scholar 

  9. Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance. Chapman and Hall, Boca Raton (1996)

    Google Scholar 

  10. Lee, J.: Attractor-Based Trust-Region Algorithm for Efficient Training of Multilayer Perceptrons. Electronics Letters 39, 71–72 (2003)

    Article  Google Scholar 

  11. Lee, D., Lee, J.: A Novel Three-Phase Algorithm for RBF Neural Network Center Selection. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 350–355. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Lee, H.S., Lee, J., Yoon, Y.G., Kim, S.: Coherent Risk Meausure Using Feedfoward Neural Networks. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 904–909. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Lee, J., Chiang, H.D.: A Dynamical Trajectory-Based Methodology for Systematically Computing Multiple Optimal Solutions of General Nonlinear Programming Problems. IEEE Trans. on Automatic Control 49(6), 888–899 (2004)

    Article  MathSciNet  Google Scholar 

  14. Merton, R.: The Theory of Rational Option Pricing. Bell Journal of Economics and Managemenet Science 4, 141–183 (1973)

    Article  MathSciNet  Google Scholar 

  15. Merton, R.: Option Pricing when Underlying Stock Returns Are Discontinuous. Journal of Financial Economics 3, 124–144 (1976)

    Article  Google Scholar 

  16. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)

    Book  MATH  Google Scholar 

  17. Rubinstein, M.: Implied Binomial Trees. The Journal of Finance 49, 771–818 (1994)

    Article  Google Scholar 

  18. Shimko, D.: Bounds of Probability. Risk, 33–37 (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, BH., Lee, D., Lee, J. (2006). Local Volatility Function Approximation Using Reconstructed Radial Basis Function Networks. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760191_77

Download citation

  • DOI: https://doi.org/10.1007/11760191_77

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34482-7

  • Online ISBN: 978-3-540-34483-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics