Abstract
Modelling volatility smile is very important in financial practice for pricing and hedging derivatives. In this paper, a novel learning method to approximate a local volatility function from a finite market data set is proposed. The proposed method trains a RBF network with fewer volatility data and finds an optimized network through option pricing error minimization. Numerical experiments are conducted on S&P 500 call option market data to illustrate a local volatility surface estimated by the method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Andersen, L.B.G., Brotherton-Ratcliffe, R.: The Equity Option Volatility Smile: An Implicit Finite Difference Approach. Journal of Computational Finance 1(2) (1997)
Avellaneda, M., Friedman, M., Holmes, C., Samperi, D.: Calibrating Volatility Surfaces via Relative Entropy Minimazation. Applied Mathematical Finances 4, 37–64 (1997)
Black, F., Scholes, M.: The Pricing of Options and Corporate Liabilities. Journal of Political Economy 81, 637–659 (1973)
Coleman, T.F., Li, Y., Verma, A.: Reconstructing the Unknown Local Volatility Function. The Journal of Computational Finance 2(3) (1999)
Dupire, B.: Pricing with a Smile. Risk 7, 18–20 (1994)
Han, G.S., Lee, D., Lee, J.: Estimating The Yield Curve Using Calibrated Radial Basis Function Networks. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 885–890. Springer, Heidelberg (2005)
Haykin, S.: Neural Networks: a Comprehensive Foundation. Prentice-Hall, New York (1999)
Hull, J., White, A.: The Pricing of Options on Assets with Stochastic Volailities. Journal of Finance 3, 281–300 (1987)
Lamberton, D., Lapeyre, B.: Introduction to Stochastic Calculus Applied to Finance. Chapman and Hall, Boca Raton (1996)
Lee, J.: Attractor-Based Trust-Region Algorithm for Efficient Training of Multilayer Perceptrons. Electronics Letters 39, 71–72 (2003)
Lee, D., Lee, J.: A Novel Three-Phase Algorithm for RBF Neural Network Center Selection. In: Yin, F.-L., Wang, J., Guo, C. (eds.) ISNN 2004. LNCS, vol. 3173, pp. 350–355. Springer, Heidelberg (2004)
Lee, H.S., Lee, J., Yoon, Y.G., Kim, S.: Coherent Risk Meausure Using Feedfoward Neural Networks. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 904–909. Springer, Heidelberg (2005)
Lee, J., Chiang, H.D.: A Dynamical Trajectory-Based Methodology for Systematically Computing Multiple Optimal Solutions of General Nonlinear Programming Problems. IEEE Trans. on Automatic Control 49(6), 888–899 (2004)
Merton, R.: The Theory of Rational Option Pricing. Bell Journal of Economics and Managemenet Science 4, 141–183 (1973)
Merton, R.: Option Pricing when Underlying Stock Returns Are Discontinuous. Journal of Financial Economics 3, 124–144 (1976)
Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
Rubinstein, M.: Implied Binomial Trees. The Journal of Finance 49, 771–818 (1994)
Shimko, D.: Bounds of Probability. Risk, 33–37 (1993)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kim, BH., Lee, D., Lee, J. (2006). Local Volatility Function Approximation Using Reconstructed Radial Basis Function Networks. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760191_77
Download citation
DOI: https://doi.org/10.1007/11760191_77
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34482-7
Online ISBN: 978-3-540-34483-4
eBook Packages: Computer ScienceComputer Science (R0)