Skip to main content

Application of SVM Framework for Classification of Single Trial EEG

  • Conference paper
Advances in Neural Networks - ISNN 2006 (ISNN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3973))

Included in the following conference series:

Abstract

A brain-computer interface (BCI) system requires effective online processing of electroencephalogram (EEG) signals for real-time classification of continuous brain activity. In this paper, based on support vector machines (SVM), we present a framework for single trial online classification of imaginary left and right hand movements. For classification of motor imagery, the time-frequency information is extracted from two frequency bands (μ and β rhythms) of EEG data with Morlet wavelets, and the SVM framework is used for accumulation of the discrimination evidence over time to infer user’s unknown motor intention. This algorithm improved the single trial online classification accuracy as well as stability, and achieved a low classification error rate of 10%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blankertz, B., Curio, G., Müller, K.-R.: Classifying Single Trial EEG: Toward Brain Computer Interfacing. Advances in Neural Inf. Proc. Systems 14, 157–164 (2002)

    Google Scholar 

  2. Pfurtscheller, G., Silva, F.H.L.: da: Event-Related EEG/MEG Synchronization and Desynchronization: Basic Principles. Clin.Neurophys 110, 1842–1857 (1999)

    Article  Google Scholar 

  3. Lemm, S., Schäfer, C., Curio, G.: BCI Competition 2003—Data Set III: Probabilistic Modeling of Sensorimotor Rhythms for Classification of Imaginary Hand Movements. IEEE Trans. Biomed. Eng. 51(6), 1077–1080 (2004)

    Article  Google Scholar 

  4. Blankertz, B., Müller, K.-R., Curio, G., Vaughan, T.M., Schalk, G., Wolpaw, J.R., Schloegl, A., Neuper, C., Pfurtscheller, G., Hinterberger, T., Schröder, M., Birbaumer, N.: The BCI Competition 2003: Progress and Perspectives in Detection and Discrimination of EEG Single Trials. IEEE Trans. Biomed. Eng. 51(6), 1044–1051 (2004)

    Article  Google Scholar 

  5. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-Computer Interfaces for Communication and Control. Clin.Neurophys 113, 767–791 (2002)

    Article  Google Scholar 

  6. Torrence, C., Compo, G.: A Practical Guide to Wavelet Analysis. Bull. Amer. Meterol. 79(1), 61–78 (1998)

    Article  Google Scholar 

  7. Burges, C.J.C.: A Tutorial on Support Vector Machines for Pattern Recognition. Data Mining Knowledge Discovery 2, 121–167 (1998)

    Article  Google Scholar 

  8. Schlögl, A., Neuper, C., Pfurtscheller, G.: Estimating The Mutual Information of An EEG-based Brain-Computer Interface. Biomed. Technik. 47(1-2), 3–8 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liao, X., Yin, Y., Li, C., Yao, D. (2006). Application of SVM Framework for Classification of Single Trial EEG. In: Wang, J., Yi, Z., Zurada, J.M., Lu, BL., Yin, H. (eds) Advances in Neural Networks - ISNN 2006. ISNN 2006. Lecture Notes in Computer Science, vol 3973. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11760191_80

Download citation

  • DOI: https://doi.org/10.1007/11760191_80

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34482-7

  • Online ISBN: 978-3-540-34483-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics