Skip to main content

Kernels for the Vertex Cover Problem on the Preferred Attachment Model

  • Conference paper
Experimental Algorithms (WEA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4007))

Included in the following conference series:

  • 966 Accesses

Abstract

We examine the behavior of two kernelization techniques for the vertex cover problem viewed as preprocessing algorithms. Specifically, we deal with the kernelization algorithms of Buss and of Nemhauser & Trotter. Our evaluation is applied to random graphs generated under the preferred attachment model, which is usually met in real word applications such as web graphs and others. Our experiments indicate that, in this model, both kernelization algorithms (and, specially, the Nemhauser & Trotter algorithm) reduce considerably the input size of the problem and can serve as very good preprocessing algorithms for vertex cover, on the preferential attachment graphs.

This research was supported by the EU 6th FP under contract 001907 (DELIS). The first author was partially supported by the Distinció per a la Promoció de la Recerca de la GC, 2002.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H., Symons, C.T.: Kernelization algorithms for the vertex cover problem: Theory and experiments. In: Sixth Workshop on Algorithm Engineering and Experiments and the First Workshop on Analytic Algorithmics and Combinatorics, New Orleans, LA, USA, pp. 62–69. SIAM, Philadelphia (2004)

    Google Scholar 

  2. Barabási, A.-L.: Emergence of scaling in complex networks. In: Handbook of graphs and networks, pp. 69–84. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  3. Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bollobás, B., Riordan, O., Spencer, J., Tusnády, G.: The degree sequence of a scale-free random graph process. Random Structures Algorithms 18(3), 279–290 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Buss, J.F., Goldsmith, J.: Nondeterminism within p. SIAM J. Computing 22, 560–572 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, J., Kanj, I.A., Xia, G.: Simplicity is beauty: Improved upper bounds for vertex cover. Technical Report 05-008, Texas A&M University, Utrecht, the Netherlands (April 2005)

    Google Scholar 

  7. Clauset, A., Moore, C.: Accuracy and scaling phenomena in internet mapping. Phys. Rev. Lett. 94 (2005)

    Google Scholar 

  8. Downey, R.G., Fellows, M.R.: Parameterized complexity. In: Monographs in Computer Science, Springer, New York (1999)

    Google Scholar 

  9. Fellows, M.R.: Parameterized complexity: the main ideas and some research frontiers. In: Eades, P., Takaoka, T. (eds.) ISAAC 2001. LNCS, vol. 2223, Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Fellows, M.R.: Blow-ups, win/win’s, and crown rules: Some new directions in fpt. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Fomin, F.V., Grandoni, F., Kratsch, D.: Large measure and conquer: A simple O (20.288 n) independent set algorithm. In: 17th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), ACM and SIAM, New York (2006)

    Google Scholar 

  12. Håstad, J.: Some optimal inapproximability results (electronic). J. ACM 48(4), 798–859 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. Karakostas, G.: A better approximation ratio for the vertex cover problem. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1043–1050. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Karp, R.M.: Reducibility among combinatorial problems. In: Complexity of computer computations (Proc. Sympos., IBM Thomas J. Watson Res. Center, Yorktown Heights, N.Y., 1972), pp. 85–103. Plenum, New York (1972)

    Google Scholar 

  15. Monien, B., Speckenmeyer, E.: Ramsey numbers and an approximation algorithm for the vertex cover problem. Acta Inform. 22(1), 115–123 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Nemhauser, G.L., Trotter Jr., L.E.: Vertex packings: structural properties and algorithms. Math. Programming 8, 232–248 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  17. Newman, M.E.J.: Random graphs as models of networks. In: Handbook of graphs and networks, pp. 35–68. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  18. Robson, J.M.: Finding a maximum independent set in time O(2n/4). manuscript (2001), http://dept-info.labri.fr/~robson/mis/techrep.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Díaz, J., Petit, J., Thilikos, D.M. (2006). Kernels for the Vertex Cover Problem on the Preferred Attachment Model. In: Àlvarez, C., Serna, M. (eds) Experimental Algorithms. WEA 2006. Lecture Notes in Computer Science, vol 4007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11764298_21

Download citation

  • DOI: https://doi.org/10.1007/11764298_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34597-8

  • Online ISBN: 978-3-540-34598-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics