Abstract
Let \(\mathbb{U}\) be a set of elements and d a distance function defined among them. Let NN k (u) be the k elements in \(\mathbb{U}-\{u\}\) having the smallest distance to u. The k-nearest neighbor graph (k nng) is a weighted directed graph \(G(\mathbb{U},E)\) such that E = {(u,v), v ∈ NN k (u)}. Several k nng construction algorithms are known, but they are not suitable to general metric spaces. We present a general methodology to construct k nngs that exploits several features of metric spaces. Experiments suggest that it yields costs of the form c 1 n 1.27 distance computations for low and medium dimensional spaces, and c 2 n 1.90 for high dimensional ones.
Supported in part by Millennium Nucleus Center for Web Research, Grant P04-067-F, Mideplan, Chile; and CONACyT, Mexico.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arya, S., Mount, D., Netanyahu, N., Silverman, R., Wu, A.: An optimal algorithm for approximate nearest neighbor searching in fixed dimension. In: Proc. SODA 1994, pp. 573–583 (1994)
Baeza-Yates, R., Hurtado, C., Mendoza, M.: Query clustering for boosting web page ranking. In: Favela, J., Menasalvas, E., Chávez, E. (eds.) AWIC 2004. LNCS (LNAI), vol. 3034, pp. 164–175. Springer, Heidelberg (2004)
Brito, M., Chávez, E., Quiroz, A., Yukich, J.: Connectivity of the mutual k-nearest neighbor graph in clustering and outlier detection. Statistics & Probability Letters 35, 33–42 (1996)
Callahan, P.: Optimal parallel all-nearest-neighbors using the well-separated pair decomposition. In: Proc. FOCS 1993, pp. 332–340 (1993)
Callahan, P., Kosaraju, R.: A decomposition of multidimensional point sets with applications to k nearest neighbors and n body potential fields. JACM 42(1), 67–90 (1995)
Chávez, E., Navarro, G.: A compact space decomposition for effective metric indexing. Pattern Recognition Letters 26(9), 1363–1376 (2005)
Chávez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)
Clarkson, K.: Fast algorithms for the all-nearest-neighbors problem. In: Proc. FOCS 1983, pp. 226–232 (1983)
Clarkson, K.: Nearest neighbor queries in metric spaces. Discrete Computational Geometry 22(1), 63–93 (1999)
Dickerson, M., Eppstein, D.: Algorithms for proximity problems in higher dimensions. Computational Geometry Theory and Applications 5, 277–291 (1996)
Duda, R., Hart, P.: Pattern Classification and Scene Analysis. Wiley, Chichester (1973)
Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, Heidelberg (1987)
Eppstein, D., Erickson, J.: Iterated nearest neighbors and finding minimal polytopes. Discrete & Computational Geometry 11, 321–350 (1994)
Figueroa, K.: An efficient algorithm to all k nearest neighbor problem in metric spaces. Master’s thesis, Universidad Michoacana, Mexico (in Spanish, 2000)
Hjaltason, G., Samet, H.: Incremental similarity search in multimedia databases. Technical Report TR 4199, Dept. of Comp. Sci. Univ. of Maryland (November 2000)
Kalantari, I., McDonald, G.: A data structure and an algorithm for the nearest point problem. IEEE Trans. Software Eng. 9(5), 631–634 (1983)
Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics. In: Proc. STOC 2002, pp. 741–750 (2002)
Krauthgamer, R., Lee, J.: Navigating nets: simple algorithms for proximity search. In: Proc. SODA 2004, pp. 798–807 (2004)
Paredes, R., Chávez, E.: Using the k-nearest neighbor graph for proximity searching in metric spaces. In: Consens, M.P., Navarro, G. (eds.) SPIRE 2005. LNCS, vol. 3772, pp. 127–138. Springer, Heidelberg (2005)
R Development Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2004)
Vaidya, P.: An O(nlogn) algorithm for the all-nearest-neighbor problem. Discrete & Computational Geometry 4, 101–115 (1989)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Paredes, R., Chávez, E., Figueroa, K., Navarro, G. (2006). Practical Construction of k-Nearest Neighbor Graphs in Metric Spaces. In: Àlvarez, C., Serna, M. (eds) Experimental Algorithms. WEA 2006. Lecture Notes in Computer Science, vol 4007. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11764298_8
Download citation
DOI: https://doi.org/10.1007/11764298_8
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34597-8
Online ISBN: 978-3-540-34598-5
eBook Packages: Computer ScienceComputer Science (R0)