Skip to main content

Optimal Associative Neighbor Mining Using Attributes for Ubiquitous Recommendation Systems

  • Conference paper
Flexible Query Answering Systems (FQAS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4027))

Included in the following conference series:

  • 540 Accesses

Abstract

Ubiquitous recommendation systems predict new items of interest for a user, based on predictive relationship discovered between the user and other participants in Ubiquitous Commerce. In this paper, optimal associative neighbor mining, using attributes, for the purpose of improving accuracy and performance in ubiquitous recommendation systems, is proposed. This optimal associative neighbor mining selects the associative users that have similar preferences by extracting the attributes that most affect preferences. The associative user pattern comprising 3-AUs (groups of associative users composed of 3-users), is grouped through the ARHP algorithm. The approach is empirically evaluated, for comparison with the nearest-neighbor model and k-means clustering, using the MovieLens datasets. This method can solve the large-scale dataset problem without deteriorating accuracy quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ding, C., He, X.: K-Means Clustering via Principal Component Analysis. In: Proc. of the 21st Int. Conf. on Machine Learning, pp. 225–232 (2004)

    Google Scholar 

  2. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining Collaborative Filtering Recommendations. In: Proc. of the Conf. on Computer Supported Cooperative Work, pp. 241–250 (2000)

    Google Scholar 

  3. Han, E.H., Karypis, G., Kumar, V.: Clustering based on Association Rule Hypergraphs. In: Proc. of the SIGMOD 1997 Workshop on Research Issues in Data Mining and Knowledge Discovery, pp. 9–13 (1997)

    Google Scholar 

  4. Yu, H., Hatzivassiloglou, V.: Towards Answering Opinion Questions: Separating Facts from Opinions and Identifying the Polarity of Opinion Sentences. In: Proc. of the Conf. on Empirical Methods in Natural Language Processing (2003)

    Google Scholar 

  5. Jung, K.Y., Lee, J.H.: User Preference Mining through Hybrid Collaborative Filtering and Content-based Filtering in Recommendation System. IEICE Transaction on Information and Systems E87-D(12), 2781–2790 (2004)

    Google Scholar 

  6. Ko, S.-J., Lee, J.-H.: Optimization of Association Word Knowledge Base through Genetic Algorithm. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 212–221. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Karypis, G.: Evaluation of Item-Based Top-N Recommendation Algorithms. Technical Report CS-TR-00-46, Computer Science Dept., University of Minnesota (2000)

    Google Scholar 

  8. Wang, J., de Vries, A.P., Reinders, M.J.T.: A User-Item Relevance Model for Log-Based Collaborative Filtering. In: Lalmas, M., MacFarlane, A., Rüger, S.M., Tombros, A., Tsikrika, T., Yavlinsky, A. (eds.) ECIR 2006. LNCS, vol. 3936, pp. 37–48. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. MovieLens Collaborative Filtering Data Set (2000), Grouplens Research Project, http://www.cs.umn.edu/research/GroupLens/

  10. Michael, T.: Maching Learning, pp. 154–200. McGraq-Hill (1997)

    Google Scholar 

  11. Torres, R., McNee, S.M., Abel, M., Konstan, J.A., Riedl, J.: Enhancing Digital Libraries with TechLens+. In: Proc. of the 4th ACM/IEEE Joint Conf. on Digital Libraries, pp. 228–237 (2004)

    Google Scholar 

  12. Herlocker, J.L., Konstan, J.A., Terveen, L.G., Riedl, J.T.: Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on Information Systems (TOIS) archive 22(1), 5–53 (2004)

    Article  Google Scholar 

  13. Kim, T.-H., Yang, S.-B.: Using Attributes to Improve Prediction Quality in Collaborative Filtering. In: Bauknecht, K., Bichler, M., Pröll, B. (eds.) EC-Web 2004. LNCS, vol. 3182, pp. 1–10. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  14. Hwang, J.H., Gu, M.S., Ryu, K.H.: Context-Based Recommendation Service in Ubiquitous Commerce. In: Gervasi, O., Gavrilova, M.L., Kumar, V., Laganá, A., Lee, H.P., Mun, Y., Taniar, D., Tan, C.J.K. (eds.) ICCSA 2005. LNCS, vol. 3481, pp. 966–976. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jung, KY., Hwang, HJ., Kang, UG. (2006). Optimal Associative Neighbor Mining Using Attributes for Ubiquitous Recommendation Systems. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2006. Lecture Notes in Computer Science(), vol 4027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11766254_38

Download citation

  • DOI: https://doi.org/10.1007/11766254_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34638-8

  • Online ISBN: 978-3-540-34639-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics