Abstract
We present an approach for relation extraction from texts aimed to enrich the semantic annotations produced by a semantic web portal. The approach exploits linguistic and empirical strategies, by means of a pipeline method involving processes such as a parser, part-of-speech tagger, named entity recognition system, pattern-based classification and word sense disambiguation models, and resources such as an ontology, knowledge base and lexical databases. With the use of knowledge intensive strategies to process the input data and corpus-based techniques to deal both with unpredicted cases and ambiguity problems, we expect to accurately discover most of the relevant relations for known and new entities, in an automated way.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ciaramita, M., Gangemi, A., Ratsch, E., Saric, J., Rojas, I.: Unsupervised learning of semantic relations between concepts of a molecular biology ontology. In: 19th IJCAI, pp. 659–664 (2005)
Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A Framework and Graphical Development Environment for Robust NLP Tools and Applications. In: 40th ACL Meeting, Philadelphia (2002)
Cunningham, H., Maynard, D., Tablan, V.: JAPE: A Java Annotation Patterns Engine.Tech. Report CS–00–10, University of Sheffield, Department of Computer Science (2000)
Fellbaum, C.D. (ed.): Wordnet: An Electronic Lexical Database. The MIT Press, Cambridge (1998)
Gamallo, P., Gonzalez, M., Agustini, A., Lopes, G., de Lima, V.S.: Mapping syntactic dependencies onto semantic relations. In: ECAI Workshop on Machine Learning and Natural Language Processing for Ontology Engineering, Lyon, France (2002)
Iria, J., Ciravegna, F.: Relation Extraction for Mining the Semantic Web. Dagstuhl Seminar on Machine Learning for the Semantic Web, Dagstuhl, Germany (2005)
Lei, Y., Sabou, M., Lopez, V., Zhu, J., Uren, V.S., Motta, E.: An Infrastructure for Acquiring High Quality Semantic Metadata. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 230–244. Springer, Heidelberg (2006)
Lin, D.: Principle based parsing without overgeneration. In: 31st ACL, Columbus, pp. 112–120 (1993)
Lopez, V., Pasin, M., Motta, E.: AquaLog: An Ontology-Portable Question Answering System for the Semantic Web. In: Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005. LNCS, vol. 3532, pp. 546–562. Springer, Heidelberg (2005)
Maedche, A., Staab, S.: Ontology learning for the semantic web. IEEE Intelligent Systems 16, 72–79 (2001)
Miller, S., Fox, H., Ramshaw, L.A., Weischedel, R.M.: A novel use of statistical parsing to extract information from text. In: 6th ANLP-NAACL, Seattle, pp. 226-233 (2000)
Mihalcea, R., Csomai, A.: SenseLearner: Word Sense Disambiguation for All Words in Unrestricted Text. In: 43rd ACL Meeting, Ann Arbor (2005)
Reinberger, M.L., Spyns, P.: Discovering knowledge in texts for the learning of DOGMA inspired ontologies. In: ECAI 2004 Workshop on Ontology Learning and Population, Valencia, pp. 19–24 (2004)
Roth, D., Yih, W.T.: Probabilistic reasoning for entity & relation recognition. In: 19th COLING, Taipei, Taiwan, pp. 1–7 (2002)
Schutz, A., Buitelaar, P.: RelExt: A Tool for Relation Extraction from Text in Ontology Extension. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 593–606. Springer, Heidelberg (2005)
Stevenson, M.: An Unsupervised WordNet-based Algorithm for Relation Extraction. In: 4th LREC Workshop Beyond Named Entity: Semantic Labeling for NLP Tasks, Lisbon (2004)
Zelenko, D., Aone, C., Richardella, A.: Kernel Methods for Relation Extraction. Journal of Machine Learning Research 3, 1083–1106 (2003)
Zhao, S., Grishman, R.: Extracting Relations with Integrated Information Using Kernel Methods. In: 43rd ACL Meeting, Ann Arbor (2005)
Zhu, J., Uren, V., Motta, E.: ESpotter: Adaptive Named Entity Recognition for Web Browsing. In: 3rd Conference on Professional Knowledge Management, Kaiserslautern, pp. 518–529 (2005)
Yangarber, R., Grishman, R., Tapanainen, P.: Unsupervised Discovery of Scenario-Level Patterns for Information Extraction. In: 6th ANLP, pp. 282–289 (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Specia, L., Motta, E. (2006). A Hybrid Approach for Relation Extraction Aimed at the Semantic Web. In: Larsen, H.L., Pasi, G., Ortiz-Arroyo, D., Andreasen, T., Christiansen, H. (eds) Flexible Query Answering Systems. FQAS 2006. Lecture Notes in Computer Science(), vol 4027. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11766254_48
Download citation
DOI: https://doi.org/10.1007/11766254_48
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34638-8
Online ISBN: 978-3-540-34639-5
eBook Packages: Computer ScienceComputer Science (R0)