Skip to main content

Optimal Line and Arc Detection on Run-Length Representations

  • Conference paper
Graphics Recognition. Ten Years Review and Future Perspectives (GREC 2005)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 3926))

Included in the following conference series:

Abstract

The robust detection of lines and arcs in scanned documents or technical drawings is an important problem in document image understanding. We present a new solution to this problem that works directly on run-length encoded data. The method finds globally optimal solutions to parameterized thick line and arc models. Line thickness is part of the model and directly used during the matching process. Unlike previous approaches, it does not require any thinning or other preprocessing steps, no computation of the line adjacency graphs, and no heuristics. Furthermore, the only search-related parameter that needs to be specified is the desired numerical accuracy of the solution. The method is based on a branch-and-bound approach for the globally optimal detection of these geometric primitives using runs of black pixels in a bi-level image. We present qualitative and quantitative results of the algorithm on images used in the 2003 and 2005 GREC arc segmentation contests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elliman, D.: Tif2vec, an algorithm for arc segmentation in engineering drawings. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 350–359. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Wenyin, L.: Report of the arc segmentation contest. In: Lladós, J., Kwon, Y.-B. (eds.) GREC 2003. LNCS, vol. 3088, pp. 364–367. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Wenyin, L., Zhai, J., Dori, D.: Extended summary of the arc segmentation contest. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 343–349. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  4. Duda, R.O., Hart, P.E.: Use of the Hough transformation to detect lines and curves in pictures. Communications of the ACM 15, 11–15 (1972)

    Article  MATH  Google Scholar 

  5. Wenyin, L., Dori, D.: From raster to vectors: Extracting visual information from line drawings. Pattern Analysis and Applications 2, 10–21 (1999)

    Article  MATH  Google Scholar 

  6. Dori, D., Wenyin, L.: Sparse pixel vectorization: An algorithm and its performance evaluation. IEEE Trans. Pattern Analysis Machine Intelligence 21, 202–215 (1999)

    Article  Google Scholar 

  7. Dosch, P., Masini, G., Tombre, K.: Improving arc detection in graphics reognition. In: International Conference on Pattern Recongition, Barcelona, Spain, vol. 2, pp. 2243–2246 (2000)

    Google Scholar 

  8. Hilaire, X.: RANVEC and the arc segmentation contest. In: Blostein, D., Kwon, Y.-B. (eds.) GREC 2001. LNCS, vol. 2390, pp. 359–364. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  9. Breuel, T.M.: Fast recognition using adaptive subdivisions of transformation space. In: Proceedings IEEE Conf. on Computer Vision and Pattern Recognition, pp. 445–451 (1992)

    Google Scholar 

  10. Breuel, T.M.: On the use of interval arithmetic in geometric branch-and-bound algorithms. Pattern Recognition Letters 24, 1375–1384 (2003)

    Article  MATH  Google Scholar 

  11. Breuel, T.M.: Robust least square baseline finding using a branch and bound algorithm. In: Proceedings of the SPIE - The International Society for Optical Engineering, pp. 20–27 (2002)

    Google Scholar 

  12. Hagedoorn, M., Veltkamp, R.C.: Reliable and efficient pattern matching using an affine invariant metric. International Journal of Computer Vision 31, 203–225 (1999)

    Article  Google Scholar 

  13. Huttenlocher, D.P., Klanderman, G.A., Rucklidge, W.J.: Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, 850–863 (1993)

    Article  Google Scholar 

  14. Jurie, F.: Solution of the simultaneous pose and correspondence problem using Gaussian error model. Computer Vision and Image Understanding 73, 357–373 (1999)

    Article  MATH  Google Scholar 

  15. Mount, D.M., Netanyahu, N.S., Moigne, J.L.: Efficient algorithms for robust feature matching. Pattern Recognition 32, 17–38 (1999)

    Article  Google Scholar 

  16. Olson, C.F.: Locating geometric primitives by pruning the parameter space. Pattern Recognition 34, 1247–1256 (2001)

    Article  MATH  Google Scholar 

  17. Pavlidis, T.: Algorithms for Graphics and Image Processing. W. H. Freeman & Co., New York (1983)

    MATH  Google Scholar 

  18. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  19. Breuel, T.M.: Finding lines under bounded error. Pattern Recognition 29, 167–178 (1996)

    Article  Google Scholar 

  20. Hickey, T.J., Ju, Q., van Emden, M.H.: Interval arithmetic: From principles to implementation. JACM 48, 1038–1068 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jaulin, L., Kieffer, M., Didrit, O., Walter, E.: Applied Interval Analysis. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

  22. Breuel, T.M.: Representations and metrics for off-line handwriting segmentation. In: 8th International Workshop on Frontiers in Handwriting Recognition (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Keysers, D., Breuel, T.M. (2006). Optimal Line and Arc Detection on Run-Length Representations. In: Liu, W., Lladós, J. (eds) Graphics Recognition. Ten Years Review and Future Perspectives. GREC 2005. Lecture Notes in Computer Science, vol 3926. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11767978_34

Download citation

  • DOI: https://doi.org/10.1007/11767978_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34711-8

  • Online ISBN: 978-3-540-34712-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics