Skip to main content

A Comparative Study of Compound Critique Generation in Conversational Recommender Systems

  • Conference paper
Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4018))

Abstract

Critiquing techniques provide an easy way for users to feedback their preferences over one or several attributes of the products in a conversational recommender system. While unit critiques only allow users to critique one attribute of the products each time, a well-generated set of compound critiques enables users to input their preferences on several attributes at the same time, and can potentially shorten the interaction cycles in finding the target products. As a result, the dynamic generation of compound critiques is a critical issue for designing the critique-based conversational recommender systems. In earlier research the Apriori algorithm has been adopted to generate compound critiques from the given data set. In this paper we propose an alternative approach for generating compound critiques based on the multi-attribute utility theory (MAUT). Our approach automatically updates the weights of the product attributes as the result of the interactive critiquing process. This modification of weights is then used to determine the compound critiques according to those products with the highest utility values. Our experiments show that the compound critiques generated by this approach are more efficient in helping users find their target products than those generated by the Apriori algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Burke, R.D., Hammond, K.J., Young, B.C.: The FindMe approach to assisted browsing. IEEE Expert 12(4), 32–40 (1997)

    Article  Google Scholar 

  2. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Dynamic critiquing. In: Funk, P., González Calero, P.A. (eds.) ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 763–777. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  3. Reilly, J., McCarthy, K., McGinty, L., Smyth, B.: Incremental critiquing. Knowledge Based Systems 18(4-5), 143–151 (2005)

    Article  Google Scholar 

  4. Faltings, B., Pu, P., Torrens, M., Viappiani, P.: Designing example-critiquing interaction. In: International Conference on Intelligent User Interfaces, Island of Madeira (Portugal), pp. 22–29. ACM, New York (2004)

    Google Scholar 

  5. McCarthy, K., Reilly, J., McGinty, L., Smyth, B.: On the dynamic generation of compound critiques in conversational recommender systems. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 176–184. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Bocca, J.B., Jarke, M., Zaniolo, C. (eds.) Proceedings of the 20th International Conference Very Large Data Bases(VLDB), pp. 487–499. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  7. Keeney, R.L., Raiffa, H.: Decisions with Multiple Objectives: Preferences and Value Tradeoffs. John Wiley and Sons, New York (1976)

    Google Scholar 

  8. Linden, G., Hanks, S., Lesh, N.: Interactive assessment of user preference models: The automated travel assistant. In: Proceedings of the 6th International Conference on User Modeling (UM 1997) (1997)

    Google Scholar 

  9. Shearin, S., Lieberman, H.: Intelligent profiling by example. In: Proceedings of the Conference on Intelligent User Interfaces, pp. 145–151. ACM Press, New York (2001)

    Chapter  Google Scholar 

  10. Pu, P., Faltings, B.: Enriching buyers’ experiences: the smartclient approach. In: Proceedings of the SIGCHI conference on Human factors in computing systems, pp. 289–296. ACM Press, New York (2000)

    Chapter  Google Scholar 

  11. Pu, P., Kumar, P.: Evaluating example-based search tools. In: Proceedings of the ACM Conference on Electronic Commerce (EC 2004), New York, USA, pp. 208–217 (2004)

    Google Scholar 

  12. Smyth, B., McClave, P.: Similarity vs. diversity. In: Aha, D.W., Watson, I. (eds.) ICCBR 2001. LNCS (LNAI), vol. 2080, pp. 347–361. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  13. McGinty, L., Smyth, B.: On the role of diversity in conversational recommender systems. In: Ashley, K.D., Bridge, D.G. (eds.) ICCBR 2003. LNCS, vol. 2689, pp. 276–290. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  14. McCarthy, K., Reilly, J., Smyth, B., McGinty, L.: Generating diverse compound critiques. Artificial Intelligence Review 24(3-4), 339–357 (2005)

    Article  Google Scholar 

  15. Stolze, M.: Soft navigation in electronic product catalogs. International Journal on Digital Libraries 3(1), 60–66 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, J., Pu, P. (2006). A Comparative Study of Compound Critique Generation in Conversational Recommender Systems. In: Wade, V.P., Ashman, H., Smyth, B. (eds) Adaptive Hypermedia and Adaptive Web-Based Systems. AH 2006. Lecture Notes in Computer Science, vol 4018. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11768012_25

Download citation

  • DOI: https://doi.org/10.1007/11768012_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34696-8

  • Online ISBN: 978-3-540-34697-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics