Abstract
We built a Web-based adaptive recommendation system for students to select and suggest architectural cases when they analyze “Case Study” work within the architectural design studio course, which includes deep comparisons and analyses for meaningful architectural precedents. We applied hybrid recommendation mechanism, which is combining both content-based filtering and collaborative filtering in our suggested model. It not only retains the advantages of a content-based and collaborative filtering approach, but also improves the disadvantages found in both. We expect that the approach would be helpful for students to find relevant precedents more efficient and more precise with their preferences.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Buono, P., Costabile, M.F., Guida, S., Piccinno, A.: Integrating User Data and Collaborative Filtering in a Web Recommendation System. In: Reich, S., Tzagarakis, M.M., De Bra, P.M.E. (eds.) AH-WS 2001, SC 2001, and OHS 2001. LNCS, vol. 2266, pp. 315–321. Springer, Heidelberg (2002)
Balabanovic, M., Shoham, Y.: Fab: Content-Based, Collaborative Recommendation. Communications of the ACM 40(3), 66–72 (1997)
Popescul, A., Ungar, L.H., Pennock, D.M., Lawrence, S.: Probabilistic Models for Unified Collaborative and Content-Based Recommendation in Sparse-Data Environments. In: Proceedings of the Seventeenth Conference on Uncertainty in Artificial Intelligence (UAI 2001), pp. 437–444 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Pan, SF., Lee, JH. (2006). eDAADe: An Adaptive Recommendation System for Comparison and Analysis of Architectural Precedents. In: Wade, V.P., Ashman, H., Smyth, B. (eds) Adaptive Hypermedia and Adaptive Web-Based Systems. AH 2006. Lecture Notes in Computer Science, vol 4018. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11768012_53
Download citation
DOI: https://doi.org/10.1007/11768012_53
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-34696-8
Online ISBN: 978-3-540-34697-5
eBook Packages: Computer ScienceComputer Science (R0)