Skip to main content

An Adaptive Hypermedia System Using a Constraint Satisfaction Approach for Information Personalization

  • Conference paper
Adaptive Hypermedia and Adaptive Web-Based Systems (AH 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4018))

  • 1374 Accesses

Abstract

Adaptive hypermedia systems offer the functionality to personalize the information experience as per a user-model. In this paper we present a novel content adaptation approach that views information personalization as a constraint satisfaction problem. Information personalization is achieved by satisfying two constraints: (1) relevancy constraints to determine the relevance of a document to a user and (2) co-existence constraints to suggest complementing documents that either provide reinforcing viewpoints or contrasting viewpoints, as per the user’s request. Our information personalization framework involves: (a) an automatic constraint acquisition method, based on association rule mining on a corpus of documents; and (b) a hybrid of constraint satisfaction and optimization methods to derive an optimal solution—i.e. personalized information. We apply this framework to filter news items using the Reuters-21578 dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Fink, J., Kobsa, A.: Putting personalization into practice. Communications of the ACM 45(5) (2002)

    Google Scholar 

  2. Bogonikolos, N., Makris, C., Tsakalidis, A., Vassiliadis, B.: Adapting information presentation and retrieval through user modeling. In: International Conference on Information Technology: Coding and Computing, April 2-4, 2001, pp. 399–404 (2001)

    Google Scholar 

  3. Abidi, S.S.R., Chong, Y., Abidi, S.R.: Patient empowerment via ‘pushed’ delivery of customized healthcare educational content over the internet. In: 10th World Congress on Medical Informatics, London (2001)

    Google Scholar 

  4. Kobsa, A.: Customized hypermedia presentation techniques for improving online customer relationships. Knowledge Engineering Review 16(2), 111–155 (1999)

    Article  Google Scholar 

  5. Henze, N., Nejdl, W.: Extendible adaptive hypermedia courseware: integrating different courses and web material. In: Brusilovsky, P., Stock, O., Strappavara, C. (eds.) Adaptive Hypermedia and Adaptive Web-based Systems, pp. 109–120. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  6. Brusilovsky, P., Kobsa, A., Vassileva, J.: Adaptive Hypertext and Hypermedia. Kluwer Academic Publishers, Dordrecht (1998)

    Google Scholar 

  7. Abidi, S.S.R., Chong, Y.: An adaptive hypermedia system for information customization via content adaptation. IADIS Intl. Journal of WWW/Internet 2(1), 79–94 (2004)

    Google Scholar 

  8. Han, J.W., Kamber, M.: Data Mining: Concepts & Techniques. Morgan Kaufmann, San Francisco (2000)

    Google Scholar 

  9. Kobsa, A., Muller, D., Nill, A.: KN-AHS: an adaptive hypermedia client of the user modeling system BGP-MS. In: Fourth Intl. Conf. on User Modeling, pp. 99–105 (1994)

    Google Scholar 

  10. Boyle, C., Encarnacion, A.O.: MetaDoc: An adaptive hypertext reading system. User Models and User Adapted Interaction 4(1), 1–19 (1994)

    Article  Google Scholar 

  11. Hohl, H., Bocker, H.D., Gunzenhauser, R.: HYPADAPTER: An adaptive hypertext system for exploratory learning and programming. User Modelling and User Adapted Interaction 6(2), 131–155

    Google Scholar 

  12. Kaplan, C., Fenwick, J., Chen, J.: Adaptive hypertext navigation based on user goals and context. User Modelling and User Adapted Interaction 3(3), 193–220

    Google Scholar 

  13. Tsang, E.: Foundations of constraint satisfaction. Academic Press, London, UK (1993)

    Google Scholar 

  14. Padmanabhuni, S., You, J.H., Ghose, A.: A framework for learning constraints. In: Proc. of the PRICAI Workshop on Induction of Complex Representations (August 1996)

    Google Scholar 

  15. Freuder, E., Wallace, R.: Partial constraint satisfaction. Artificial Intelligence 58, 21–70 (1992)

    Article  MathSciNet  Google Scholar 

  16. Aarts, E., Lenstra, J.K. (eds.): Local search in combinatorial optimization. Princeton University Press, Princeton (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Abidi, S.S.R., Zeng, Y. (2006). An Adaptive Hypermedia System Using a Constraint Satisfaction Approach for Information Personalization. In: Wade, V.P., Ashman, H., Smyth, B. (eds) Adaptive Hypermedia and Adaptive Web-Based Systems. AH 2006. Lecture Notes in Computer Science, vol 4018. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11768012_55

Download citation

  • DOI: https://doi.org/10.1007/11768012_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-34696-8

  • Online ISBN: 978-3-540-34697-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics