Skip to main content

Multicriteria Automatic Essay Assessor Generation by Using TOPSIS Model and Genetic Algorithm

  • Conference paper
Intelligent Tutoring Systems (ITS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4053))

Included in the following conference series:

  • 3638 Accesses

Abstract

With the advance of computer technology and computing power, more efficient automatic essay assessment is coming to use. Essay assessment should be a multicriteria decision making problem, because an essay is composed of multiple concepts. While prior works have proposed several methods to assess students’ essays, little attention is paid to use multicriteria for essay evaluation. This paper presents a Multicriteria Automatic Essay Assessor (MAEA) based on combined Latent Semantic Analysis (LSA), Technique for Order Preference by Similarity to Ideal Solution (TOPSIS), and Genetic Algorithm (GA) to assess essays. LSA is employed to construct concept dimensions, TOPSIS incorporated to model the multicriteria essay assessor, and GA used to find the optimal concept dimensions among LSA concept dimensions. To show the effectiveness of the method, the essays of students majoring in information management are evaluated by MAEA. The results show that MAEA’s scores are highly correlated with those of the human graders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Abo-Sinna, M.A., Amer, A.H.: Extensions of TOPSIS for multi-objective large-scale nonlinear programming problems. Applied Mathematics and Computation, 243–256 (2005)

    Google Scholar 

  2. Chang, Y.-H., Yeh, C.-H.: Evaluating airline competitiveness using multiattribute decision making. Omega 29, 405–415 (2001)

    Article  Google Scholar 

  3. Clauser, B.E., Ross, L.P., Clyman, S.G., Rose, K.M., Margolis, M.J., Nungester, R.J., Piemme, T.E., Chang, L., El-Bayoumi, G., Malakoff, G.L., Pincetl, P.S.: Development of a scoring algorithm to replace expert rating for scoring a complex performance-based assessment. Applied Measurement in Education 10, 345–358 (1997)

    Article  Google Scholar 

  4. Dale, E., Chall, J.S.: A formula for predicting readability. Educational Research Bulletin 87, 11–20 (1948)

    Google Scholar 

  5. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. Journal of the American Society for Information Science 41, 391–407 (1990)

    Article  Google Scholar 

  6. Deng, H., Yeh, C.-H., Willis, R.J.: Inter-company comparison using modified TOPSIS with objective weights. Computers and Operations Research 10, 963–973 (2000)

    Article  Google Scholar 

  7. Duwairi, R.M.: A framework for the computerized assesment of university student essays. Computers in Human Behavior 22, 381–388 (2006)

    Article  Google Scholar 

  8. Foltz, P.W.: Quantitative Approaches to Semantic Knowledge Representations. Discourse Processes 25, 127–130 (1998)

    Article  Google Scholar 

  9. Holland, J.H.: Adaption in natural and artificial systems. MIT Press, Massachusetts (1992)

    Google Scholar 

  10. Hwang, C.L., Yoon, K.: Multiple Attribute Decision Making: Methods and Applica-tions. Springer, New York (1981)

    Google Scholar 

  11. Landauer, T.K., Dumais, S.T.: A Solution to Plato’s Problem: The Latent Semantic Analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review 104, 211–240 (1997)

    Article  Google Scholar 

  12. Landauer, T.K., Laham, D., Foltz, P.W.: The intelligent Essay Assessor. IEEE Intelligent Systems 15, 27–31 (2000)

    Google Scholar 

  13. Landauer, T.K., Laham, D., Foltz, P.W.: Automatic essay assessment. Assessment in Education: Principles, Policy & Practice 10, 295–308 (2003)

    Article  Google Scholar 

  14. Landauer, T.K.F., Peter, W., Laham, D.: An Introduction to Latent Semantic Analysis. Discourse Processes 25, 259–284 (1998)

    Article  Google Scholar 

  15. Lemaire, B., Dessus, P.: A system to assess the semantic content of student essays. Journal of Educational Computing Research 24, 305–320 (2001)

    Article  Google Scholar 

  16. Martin-Bautista, M., Vila, M.-A., Larsen, H.L.: A fuzzy genetic algorithm approach to an adaptive information retrieval agent. Journal of the American Society for Information Science 50, 760–771 (1999)

    Article  Google Scholar 

  17. Miller, T.: Essay Assessment with Latent Semantic Analysis. Journal of Educational Computing Research 29, 495–512 (2003)

    Article  Google Scholar 

  18. Page, E.B.: The imminence of grading essays by computers. Phi Delta Kappan 47, 238–243 (1966)

    Google Scholar 

  19. Page, E.B.: Computer grading of student prose, using modern concepts and software. Journal of Experimental Education 62, 127–142 (1994)

    Article  Google Scholar 

  20. Page, E.B., Petersen, N.S.: The computer moves into essay grading: updating the ancient test. Phi Delta Kappan, 561–565 (1995)

    Google Scholar 

  21. Powers, D.E., Burstein, J.C., Chodorow, M., Fowles, M.E., Kukich, K.: Stumping e-rater: challenging the validity of automated essay scoring. Computers in Human Behavior 18, 103–134 (2002)

    Article  Google Scholar 

  22. Rehder, B., Schreiner, M.E., Wolfe, M.B.W., Laham, D., Landauer, T.K., Kintsch, W.: Using Latent Semantic Analysis to Assess Knowledge: Some Technical Considerations. Discourse Processes 25, 337–354 (1998)

    Article  Google Scholar 

  23. Wolfe, M.B.W., Schreiner, M.E., Rehder, B., Laham, D., Foltz, P.W., Kintsch, W., Lan-dauer, T.K.: Learning from Text: Matching Readers and Texts by Latent Semantic Analysis. Discourse Processes 25, 309–336 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheng, Sl., Chang, HC. (2006). Multicriteria Automatic Essay Assessor Generation by Using TOPSIS Model and Genetic Algorithm. In: Ikeda, M., Ashley, K.D., Chan, TW. (eds) Intelligent Tutoring Systems. ITS 2006. Lecture Notes in Computer Science, vol 4053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11774303_2

Download citation

  • DOI: https://doi.org/10.1007/11774303_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35159-7

  • Online ISBN: 978-3-540-35160-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics