Abstract
In recent years, a number of systems have been developed to detect differences in how students choose to use intelligent tutoring systems, and the attitudes and goals which underlie these decisions. These systems, when trained using data from human observations and questionnaires, can detect specific behaviors and attitudes with high accuracy. However, such data is time-consuming to collect, especially across an entire tutor curriculum. Therefore, to deploy a detector of behaviors or attitudes across an entire tutor curriculum, the detector must be able to transfer to a new tutor lesson without being re-trained using data from that lesson. In this paper, we present evidence that detectors of gaming the system can transfer to new lessons without re-training, and that training detectors with data from multiple lessons improves generalization, beyond just the gains from training with additional data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Aleven, V., McLaren, B.M., Roll, I., Koedinger, K.R.: Toward Tutoring Help Seeking. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 227–239. Springer, Heidelberg (2004)
Aleven, V., Roll, I., McLaren, B.M., Ryu, E.J., Koedinger, K.: An Architecture to Combine Meta-Cognitive and Cognitive Tutoring: Pilot Testing the Help Tutor. In: Proceedings of the 12th International Conference on Artificial Intelligence in Education, pp. 17–24 (2005)
Arroyo, I., Woolf, B.: Inferring learning and attitudes from a Bayesian Network of log file data. In: Proceedings of the 12th International Conference on Artificial Intelligence in Education, pp. 33–40 (2005)
Baker, R.S., Corbett, A.T., Koedinger, K.R.: Detecting student misuse of intelligent tutoring systems. In: Lester, J.C., Vicari, R.M., Paraguaçu, F. (eds.) ITS 2004. LNCS, vol. 3220, pp. 531–540. Springer, Heidelberg (2004)
Baker, R.S., Corbett, A.T., Koedinger, K.R., Roll, I.: Detecting when students game the system, across tutor subjects and classroom cohorts. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS, vol. 3538, pp. 220–224. Springer, Heidelberg (2005)
Baker, R.S., Corbett, A.T., Koedinger, K.R., Wagner, A.Z.: Off-Task Behavior in the Cognitive Tutor Classroom: When Students “Game The System”. In: Proceedings of ACM CHI 2004: Computer-Human Interaction, pp. 383–390 (2004)
Conati, C., Maclaren, H.: Data-Driven Refinement of a Probabilistic Model of User Affect. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 40–49. Springer, Heidelberg (2005)
de Vicente, A., Pain, H.: Informing the detection of the students’ motivational state: An empirical study. In: Cerri, S.A., Gouardéres, G., Paraguaçu, F. (eds.) ITS 2002. LNCS, vol. 2363, pp. 933–943. Springer, Heidelberg (2002)
Hanley, J.A., McNeil, B.J.: The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 143, 29–36 (1982)
Maris, E.: Psychometric Latent Response Models. Psychometrika 60(4), 523–547 (1995)
Roll, I., Baker, R.S., Aleven, V., McLaren, B.M., Koedinger, K.R.: Modeling students’ metacognitive errors in two intelligent tutoring systems. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS, vol. 3538, pp. 367–376. Springer, Heidelberg (2005)
Rosenthal, R., Rosnow, R.: Essentials of Behavioral Research: Methods and Data Analysis. McGraw-Hill, New York (1991)
Yu, L., Liu, H.: Feature selection for high-dimensional data: a fast correlation-based filter solution. In: Proceedings of the International Conference on Machine Learning, pp. 856–863 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baker, R.S.J.d., Corbett, A.T., Koedinger, K.R., Roll, I. (2006). Generalizing Detection of Gaming the System Across a Tutoring Curriculum. In: Ikeda, M., Ashley, K.D., Chan, TW. (eds) Intelligent Tutoring Systems. ITS 2006. Lecture Notes in Computer Science, vol 4053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11774303_40
Download citation
DOI: https://doi.org/10.1007/11774303_40
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35159-7
Online ISBN: 978-3-540-35160-3
eBook Packages: Computer ScienceComputer Science (R0)