Abstract
This extended abstract summarizes an exploration of how computational techniques may help educational experts identify fine-grained student models. In particular, we look for methods that help us learn how students learn composite concepts. We employ Bayesian networks for the representation of student models, and cast the problem as an instance of learning the hidden substructures of Bayesian networks. The problem is challenging because we do not have direct access to students’ competence in concepts, though we can observe students’ responses to test items that have only indirect and probabilistic relationships with the competence levels. We apply mutual information and backpropagation neural networks for this learning problem, and experimental results indicate that computational techniques can be helpful in guessing the hidden knowledge structures under some circumstances.
Similar content being viewed by others
References
Mislevy, R.J., Almond, R.G., Yan, D., Steinberg, L.S.: Bayes nets in educational assessment: Where do the numbers come from? In: 15th UAI, pp. 437–446 (1999)
Liu, C.L.: Using mutual information for adaptive item comparison and student assessment. J. of Educational Technology & Society 8(4), 100–119 (2005)
Carmona, C., Millán, E., Pérez-de-la-Cruz, J.-L., Trella, M., Conejo, R.: Introducing Prerequisite Relations in a Multi-layered Bayesian Student Model. In: Ardissono, L., Brna, P., Mitrović, A. (eds.) UM 2005. LNCS (LNAI), vol. 3538, pp. 347–356. Springer, Heidelberg (2005)
Liu, C.L., Wang, Y.T.: An experience in learning about learning composite concepts. In: 6th IEEE ICALT (to appear, 2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, CL. (2006). Learning How Students Learn with Bayes Nets. In: Ikeda, M., Ashley, K.D., Chan, TW. (eds) Intelligent Tutoring Systems. ITS 2006. Lecture Notes in Computer Science, vol 4053. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11774303_96
Download citation
DOI: https://doi.org/10.1007/11774303_96
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35159-7
Online ISBN: 978-3-540-35160-3
eBook Packages: Computer ScienceComputer Science (R0)