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Abstract. Our domain of interest is polygonal (and polyhedral) approx-
imation of point sets. Neither the order of data points nor the number
of needed line segments (surface patches) are known. In particular, point
sets can be obtained by laser range scanner mounted on a moving robot
or given as edge pixels/voxels in digital images. Polygonal approximation
of edge pixels can also be interpreted as grouping of edge pixels to parts
of object contours. The presented approach is described in the statistical
framework of Expectation Maximization (EM) and in cognitively moti-
vated geometric framework. We use local support estimation motivated
by human visual perception to evaluate support in data points of EM
components after each EM step. Consequently, we are able to recognize
a locally optimal solution that is not globally optimal, and modify the
number of model components and their parameters. We will show ex-
perimentally that the proposed approach has much stronger global con-
vergence properties than the EM approach. In particular, the proposed
approach is able to converge to a globally optimal solution independent
of the initial number of model components and their initial parameters.

1 Introduction

Expectation Maximization (EM) is a very popular and powerful method that
allows simultaneous estimation of model parameters and assignment of data
points to components of the model. However, EM produces an optimal solution
only if the number of model components is well estimated and the initial values
of model parameters are close to the global optimum. If this is not the case EM
is only guaranteed to produce a locally optimal solution. This is illustrated in
Fig. 1, where (a) shows data points and the initial configuration of two straight
line segments. The number of model components (2 line segments) is correctly
initialized, but their position is not sufficiently close to the global optimum.
Fig. 1(b) shows the final, locally optimal, result obtained by the classical EM
algorithm. Fig. 1(c) shows the globally optimal approximation obtained by the
proposed method on the same input.

Due to the local optimum problem, a correct estimation of the number of
components and the initial parameters of a statistical model is crucial in all EM
applications, and therefore, belongs to one of the most challenging problems in
statistical reasoning. The proposed approach provides a solution to the problem
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Fig. 1. (a) shows the data points and the initial position of model lines. (b) shows
the optimal approximation of the data points obtained by EM. (c) shows the optimal
approximation result obtained by the proposed method.

of local optimum in EM that is based on cognitively motivated local support
evaluation of EM components. The example shown in Fig. 2 motivates the pro-
posed approach. It is obvious to humans that the approximation in (c) of the
underlying data points is significantly better then the approximation in (a). Ob-
serve the lack of local support in the data points of the middle part of the line
in (a). This observation is the key argument for the proposed extension of EM.
We will evaluate the support in data points of each EM component, and remove
parts of components with insufficient support.

The existing approaches to determine the optimal number of EM components,
of which AIC and BIC (Bayesian Information Criterion), which is equivalent to
MDL (Minimum Description Length) [1], are most known, do not base their
decision on the local support in data points of the model components. They
assume only a fix cost per each model parameter. In particular, this means that
a model component with high data support (i.e., positioned in a data region
with high point density) costs the same as a component with low data support
(i.e., positioned in a regions with low density of data points) although it is
intuitively clear that a component with low data support is far less relevant
than a component with large data support.

AIC, BIC, and MDL require separate EM runs until convergence for all pos-
sible number of model components, each run composed of several EM iterations,
which may even be in the order of several thousands. For AIC, BIC, and MDL



Polygonal Approximation of Point Sets 161

(a)
27 28 29 30 31 32 33 34 35 36

62

63

64

65

66

67

68

69

iteration 20, no splitting

(b)
27 28 29 30 31 32 33 34 35 36

62

63

64

65

66

67

68

69

iteration 20, no splitting

(c)
28 29 30 31 32 33 34 35 36

62

63

64

65

66

67

68

69
iteration 5

Fig. 2. It is obvious to us that the approximation in (c) of the underlying data points
is significantly better then the approximation in (a). (a) shows the best possible ap-
proximation of the data points obtained by EM. (b) illustrates the line split (LS) based
on subsegment removal. The removed subsegments are marked with crosses. (c) shows
the final approximation result obtained by EM after the split.

to be successful, it is implicitly assumed that EM converges to global optimum
in each run. However, as illustrated in Fig. 1(b) this is not always the case, since
even with a correct number of components EM may get stuck in local minimum.
Therefore, the correct number of two model components would not be selected by
AIC, BIC, or MDL in our example. By locally evaluating the support in the data
points of the two lines in Fig. 1(b), we can clearly determine that they form a bad
approximation of the data points. By removing most of their parts, and retain-
ing only small parts around the data points, we create a better input for the EM
algorithm. This finally leads to a globally optimal approximation in Fig. 1(c).

The proposed approach provides a solution to the problem of local optimum
in EM by adding two new steps that are well integrated with the standard E
and M steps of EM. The two new steps are geometrically motivated and can
be interpreted as split and merge steps in the context of line fitting. However,
the proposed extension of EM is not restricted to any particular shape of model
components. In the first new step, the split step, the model components obtained
by a previous EM iteration are examined for support of the data points. The
main idea (illustrated by the above example) is that higher point density around
a model component (line segment in our application) indicates a presence of a
linear structure in the data points around the segment. Parts of the segment that
do not have sufficient support are removed. This may lead to segment removal
but generally leads to a split of the segment into several subsegments. The second
new step is merging similar model components. It prevents generating statistical
models that overfit the data, i.e., fit noise in the data. This step requires a
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similarity measure of statistical model components. The merging step can be
interpreted as perceptual grouping that dates back to the first results of Gestalt
psychology in the beginning of 20th century [2].

We will show that integrating the split and merge operations in the EM frame-
work leads to a globally optimal solution. In our experiments, we were able to
obtain a globally optimal solution after just a few iterations (between 5 and 30).
Two example applications of our approach are outlined in Fig. 3. (a) shows an
original input toy image. (b) shows the edges obtained by Canny edge detector
with a substantial amount of added noise, and the initial model for our algo-
rithm. It consists of only two line segments. (c) shows an intermediate step of
our algorithm. The final polygonal approximation obtained after 27 iterations is
shown in (d). (e) shows an image obtained by sampling 3 ground truth segments
(150 points) with a substantial amount of noise (2000 points). (f) shows the ini-
tial model segments for our algorithm. We present the results of our algorithm
after 8 in (g) and 19 iterations in (h).

An overview of techniques for polygonal approximations of curves (when the
order of data points is known), which have been studied at least since early
seventies in computer vision, can be found in [3]. To some popular greed polyg-
onal approximation methods in digital images belong [4] and [5, 6]. An overview
of approaches to obtain polygonal maps from laser range data can be found
in [7, 8].

We do not make any assumptions about the order of data points and extent
of noise. The proposed method avoids the problem of a locally optimal solution
and produces stable approximations not only to straight but also to curved lines.
Moreover, the final number of fitted line segments depends on extent of noise.
This means that the number of model components is adjusted to achieve the
best possible approximation accuracy as the function of noise extent.

In order to show that the geometric and cognitively motivated split and merge
steps can be incorporated into a statistical formalism, we introduce in Section 2
a new target function to be estimated in the EM framework, and reformulate the
E and M steps in Section 3. Then we introduce statistical tests for the proposed
split and merge steps in Section 4. Finally in Section 5, we describe the geometric
parts of the split and merge steps.

2 Optimizing Kullback-Leibler Divergence

Our goal is to approximate the ground-truth density q(x) with a member pΘ(x)
of a parametric family {pΘ(x) : Θ ∈ S} of densities. We use Kullback-Leibler
divergence (KLD) to measure dissimilarity between the ground-truth and para-
metric family of densities. By definition, the KLD between the ground truth q(x)
and the density, pΘ(x) is:

D(q(x)||pΘ(x)) =
∫

log
q(x)

pΘ(x)
q(x)dx

=
∫

log q(x)q(x)dx −
∫

log pΘ(x)q(x)dx (1)
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Fig. 3. (a) An original input image. (b) The edges obtained by Canny edge detector,
and two initial line segments. (c) We see the polygonal approximation of the edge
pixels obtained after (d) The final polygonal approximation obtained after 27 iterations
is shown in (e)-(g) Illustrate our approach on simulated data generated by 3 ground
truth segments with only 150 signal and 2000 noise points.

Observe that KLD is able to determine the optimal number of model components
of pΘ. This is due to the fact that KLD D(q||pΘ), viewed as a functional on the
space

{
pΘ

}
of Gaussian mixtures, is convex and hence has a unique minimum.

It can be easily derived that the parameters Θ̂ minimizing (1) are given by

Θ̂ = argmaxΘ

{ ∫
log pΘ(x)q(x)dx

}
(2)

We obtain the classical maximum likelihood estimator by applying the MC
(Monte Carlo) integral estimator to (2) under the assumption that the obser-
vations x1, ..., xn are i.i.d. (independently and identically distributed) sample
points selected from the distribution q(x).

Θ̂ = argmaxΘ

∑
i

log pΘ(xi) (3)
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However, as we derive below (equation (6)), if some proportion of the observa-
tions x1, ..., xn are noisy, a more accurate estimator of Θ in (2) is given by:

Θ̂ = argmaxθ

∑
i

log pθ(xi)sdd(xi), (4)

where sdd is called the smoothed data density and is defined in (7) below.
Equation (4) is the basis of the proposed approach. We demonstrate theoret-

ically and experimentally that maximization in (4) yields substantially better
results than the classical EM maximization in (3). To demonstrate the signif-
icance of (4), we consider the problem of estimating the optimal number of
model components by minimizing the KLD D(q(x)||pΘ(x)) in Θ. The paramet-
ric family

{
pΘ(x)

}
, being a family of Gaussian mixture distributions, is convex.

It follows that there is a unique member pΘ̂(x) of the Gaussian mixture family
with minimum KLD from q. This minimizing mixture must have the correct
number of model components. However, it is well known that (3) cannot be used
to estimate the correct number of model components, since (3) increases when
the number of model components increases. In contrast, we are able to deter-
mine the correct number of model components when using (4) to estimate the
KLD, D(q(x)||pΘ(x)). Thus, the modified EM algorithm that maximizes (4) is
not only able to estimate model parameters but also the right number of model
components.

One of the key steps in the derivation of (4) is the Monte Carlo (MC) estimate
of the integral given by the right hand side of equation (1). Let x1, . . . , xn be
i.i.d. sample points drown from the probability density function (pdf) q(x). Then
we can approximate the integral of a continuous function f by its MC estimate:

∫
f(x)q(x)dx ≈ 1

n

∑
i

f(xi) (5)

In the usual approach to inference, it is a commonly accepted assumption that
sample data points x1, . . . , xn are distributed according to the (estimated) den-
sity q(x). This assumption is the key to insuring that maximum likelihood esti-
mators are appropriate for purposes of estimating parameters of interest. How-
ever, in all real applications, the sample data points are corrupted by a certain
amount of noise. Usually the proportion of noisy points does not decrease when
the number of sample points is increased. Due to the noise, the following equation
provides a substantially better estimate

∫
f(x)q(x)dx ≈

∑
i

f(xi)sdd(xi). (6)

Finally equation (4) clearly follows from (6) and (2).
The smoothed data density sdd is defined as

sdd(x) ∝
n∑

i=1

K(
d(x, xi)

h
) =

1
nh

n∑
i=1

G(d(x, xi), 0, h), (7)
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where proportionality refers to the fact that
∑

sdd(xi) = 1, d(x, y) is the Eu-
clidean distance, and G(d(x, y), 0, h) is a Gaussian with mean zero and the stan-
dard deviation (std) h. An intuitive motivation for sdd is as follows:

– If a given data point xj is sampled from the true distribution q(x), then xj

lies in a dense region of the observed sample points and consequently sdd(xj)
is large.

– If a given data point xj is sampled from the noise distribution, then xj is
likely to lie in a sparse region of the sample space, and consequently sdd(xj)
is small.

To estimate the bandwidth parameter h, we can draw from a large literature on
nonparametric density estimation [9, 10]. As we show in the presented experi-
mental results, an accurate bandwidth estimation in not crucial in our approach.

3 E and M Steps

We introduce latent variables z1, ..., zn which serve to properly label the respec-
tive data points x1, ..., xn. It is assumed that the pairs (xi, zi) for i = 1, . . . , n are
i.i.d. with common (unknown) joint (ground truth) density, q(x, z) = q(x)q(z|x);
q(x) is the marginal x-density and q(z|x) is the conditional density of the label z
given x. In this new framework, the KLD between the joint density q(x, z) and
a parametric counterpart density pΘ(x, z) is

D(q(x, z)‖pΘ(x, z)) = D(q(x)q(z|x)‖pΘ(x)pΘ(z|x))

=
∫

x

∫
z

{
log

[
q(x)

pΘ(x)

]
+ log

[
q(z|x)

pΘ(z|x)

]}
q(x)q(z|x)dzdx

=
∫

x

log
[

q(x)
pΘ(x)

]
q(x)dx +

∫
x

q(x)
∫

z

log
[

q(z|x)
pΘ(z|x)

]
q(z|x)dz (8)

We are now ready to introduce the expectation (E) and maximization (M)
steps. Both steps aim at minimizing the same target function (8) in our frame-
work. The expectation step yields the standard EM formula; considerations dis-
cussed above lead to a different solution for the maximization step.

Expectation Step: For a fixed set of parameters Θ, we want to find a condi-
tional density q(z|x) that minimizes D(q(x, z)||pΘ(x, z)). Since KLD is always
nonnegative, and the second summand in (8) is minimized for q(z|x) = pΘ(z|x)
(in which case it is equal to zero), we obtain from (8) that

q(z|x) = pΘ(z|x) minimizes D(q(x, z)||pΘ(x, z)).

In particular, for given sample points x1, . . . , xn, we obtain

q(zi = l|xi) = pΘ(zi = l|xi) = p(zi = l|xi, Θ) (9)

=
p(xi|zi = l, Θ)p(zi = l|Θ)

p(xi|Θ)
(10)

=
p(xi|zi = l, Θ)p(zi = l|Θ)∑k

j=1 p(xi|zi = j, Θ)p(zi = j|Θ)
=

p(xi|zi = l, Θ)πl∑k
j=1 p(xi|zi = j, Θ)πj

, (11)



166 L.J. Latecki, R. Lakaemper, and M. Sobel

where πl = p(zi = l|Θ) and πj = p(zi = j|Θ) are the prior probabilities of
component labels l and j correspondingly.

Maximization Step: For the fixed marginal distribution q(z|x) = pΘ(z|x), we
want to find a set of parameters Θ that maximizes (8). Substituting q(z|x) =
pΘ(z|x) in (8), we obtain

D(q(x, z)||pΘ(x, z)) =
∫

log(
q(x)

pΘ(x)
)q(x)dx = D(q(x)||pΘ(x)) (12)

Thus, minimizing D(q(x, z)||pΘ(x, z)) in Θ is equivalent to minimizing D(q(x)||
pΘ(x)) in Θ. Using the estimate derived in equation (4), minimizing (12) in Θ
is equivalent (in the MC setting discussed above) to maximizing the weighted
marginal density

WM(Θ) =
∑

sdd(xi) log pΘ(xi) =
∑

sdd(xi) log p(xi|Θ)

=
n∑

i=1

sdd(xi) log[
k∑

l=1

p(xi|zi = l, Θ)p(zi = l|Θ)]

=
n∑

i=1

sdd(xi) log[
k∑

l=1

p(xi|zi = l, Θ)πl] (13)

where πl = p(zi = l|Θ) are the prior probabilities of component labels l =
1, . . . , k.

Now we explicitly use the incremental update steps of the EM framework.
Using the prior probabilities of component labels π

(t)
l = p(zi = l|Θ(t)) obtained

at stage t for l = 1, ..., k, we obtain from (13) that an update of WM(Θ) is
estimated by maximizing

WM(Θ; Θ(t)) =
n∑

i=1

sdd(xi) log[
k∑

l=1

p(xi|zi = l, Θ)π(t)
l ] (14)

in Θ with Θ(t) denoting the value of Θ computed at stage t of the algorithm.
The crucial difference between this and the standard EM update is that our

target function is weighted with terms sdd(xi). We note that the known con-
vergence proofs for the EM algorithm apply in our framework, since adding the
weights sdd(xi) in (14) does not influence the convergence.

4 Split and Merge

The proposed split and merge steps adjust the number of model components by
performing compnent split and merge steps only if they increase the value of
our target function (14). Our framework is very general in that it allows many
possible selections of the candidate components for the split and merge steps.
We present specific selection methods of the candidate components in Section 5.



Polygonal Approximation of Point Sets 167

They are based on a Maximum A Posteriori principle. In the following formulas,
we assume that the candidate components are given.

Split: Assume that we are given two candidate model components l1, l2; we
consider replacing the model component l with components l1, l2. Since our goal
is maximizing QM(Θ; Θ(t)) in formula (14), we simply need to check whether
replacing l with l1, l2 increases WM , where j ∈ {1, . . . , k}:

WM(Θ; Θ(t)) =
n∑

i=1

sdd(xi) log[
∑

j

p(xi|zi = j, Θ)π(t)
j ]

<
n∑

i=1

sdd(xi) log[
∑
j �=l

p(xi|zi = l, Θ)π(t)
l

+ p(xi|zi = l1, Θ)π(t)
l1

+ p(xi|zi = l2, Θ)π(t)
l2

] (15)

We only need to perform ’local’ computation to perform this test, i.e., we only
need to compute the corresponding probabilities for the candidate components
l1, l2, subject to the condition that π

(t)
l = π

(t)
l1

+ π
(t)
l2

. The parameters are esti-
mated following the sparse EM step in Neal and Hinton [11], (see equation (15)).
In accordance with the results of [11] this local computation guarantees that the
target function increases after each iteration (if (15) holds). Convergence is also
guaranteed in this way.

Merge: Given a candidate component l, we merge two existing model compo-
nents l1, l2 to l if for j ∈ {1, . . . , k}

WM(Θ; Θ(t)) =
n∑

i=1

sdd(xi) log[
∑

j

p(xi|zi = j, Θ)π(t)
j ]

>

n∑
i=1

sdd(xi) log[
∑
j �=l

p(xi|zi = l, Θ)π(t)
l

+ p(xi|zi = l1, Θ)π(t)
l1

+ p(xi|zi = l2, Θ)π(t)
l2

] (16)

Again we only need to perform ’local’ computations to perform this test. For
merge, we only need to compute the corresponding probabilities for the candidate
component l, subject to the same constraint π

(t)
l = π

(t)
l1

+ π
(t)
l2

. If (16) holds and
we replace l1, l2 with l, the convergence of our algorithm follows from the results
of [11].

We note that the proposed split and merge steps do not work in the clas-
sical EM framework. To see this, consider sdd(xi) = 1 for all the data points
(i = 1, . . . , n). The merge inequality (16) is not satisfied even if the ground truth
model is assumed to be a single component, since multiple components can better
fit the data, and consequently have a larger log likelihood value. Analogously, if
the split inequality (15) holds for a reasonable selection of candidate component
models, the classical EM framework incorrectly splits ground truth components.
Thus, a mixture model of larger number of components is always prefered in
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the classical EM framework. In the proposed framework, sdd represents an esti-
mated density of the data points. Consequently, in the proposed split and merge
steps, the divergence of parametric components l, l1, l2 from the ground truth is
evaluated with respect to this nonparametric density.

5 Line Segments as Components

We present specific details concerning our use of line segments as EM model
components in the applications presented below. We stress that this section
applies also to hyper planes in any dimensions, but the presentation is given in
terms of line segments for purposes of simplification.

The proposed approach requires a minor extension of EM line fitting to work
with line segments, which we will call Expectation Maximization Segment Fitting
(EMSF). The difference between EMSF and EM line fitting is that our model
components are line segments (rather than lines). The input, for our model, is a
set of line segments and a set of data points. As with EM the proposed EMSF
is composed of two steps:

(1) E-step. The EM probabilities are computed based on the distances of points
to line segments instead of the distances of points to lines.

(2) M-step. Given the probabilities computed in the E-step, the new positions
of the lines are computed by minimizing squared regression error weighted
with these probabilities.

As in the case of EM line fitting, the output of the M-step is a new set of lines
(not line segments). Since we need line segments as input to the E-step, we trim
lines to line segment based on their support in the sample data. This is done by
the split process described in Section 5.2.

Now we describe the specific details related to line segments for steps (1) and
(2). In order to derive the solution of (14) for EM model components being line
segments, we introduce so called EM weights. In the classical EM, the weight
w

(t)
il = p(zi = l|xi, Θ

(t)) represents the probability that xi corresponds to seg-
ment sl for l = 1, . . . , k. We use the notation θl for the parameters of the line
segment sl itself. In our framework

w
(t)
il ∝ sdd(t)(xi) · p(zi = l|xi, Θ

(t)), (17)

and the weights are normalized so that
∑k

l=1 w
(t)
il = 1 for each i. After the E-

step associated with the t’th iteration is accomplished, we obtain a new matrix
(w(t)

il ). Intuitively, each row i = 1, ..., n of this matrix corresponds to weighted
probabilities that the data point xi is associated with the corresponding line
segments; each column l = 1, ..., k can be viewed as weights representing the
influence of each point on the computation of new line positions in the M-step.
Below, we use the notation xi = (xix, xiy) with (i = 1, ..., n) for the coordinates
of the observed data points, and (x̄, ȳ) for the coordinate averages. The line Ll,
constructed below, is constructed to go through the point (x̄, ȳ). To obtain the
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solution of (14), we perform an orthogonal regression weighted with the matrix
(wil). The solution is given as the normal vector to line Ll, which is the vector
corresponding to the smallest eigenvalue of the matrix Ml defined as

[∑n
i=1 wil(xix − x̄)2

∑n
i=1 wil(xix − x̄)(xiy − ȳ)∑n

i=1 wil(xix − x̄)(xiy − ȳ)
∑n

i=1 wil(xiy − ȳ)2

]
(18)

Finally the parameters θ
(t+1)
l are given as parameters of the line segment s

(t+1)
l

obtained by trimming the line Ll to the data points.
We are now ready to introduce particular realization of split and merge for

EM model components being line segments. The proposed split and merge EM
segment fitting (SMEMSF) algorithm iterates the following three steps

(1) EMSF (2) Split (3) Merge

Split step is presented in detail in Section 5.2 while Merge step is described in
Section 5.1. Split evaluates the support in the data points of lines obtained by
EMSF and removes the parts that are weakly supported. Since we have a finite
set of data points, this has the effect of trimming the lines to line segments.
Finally the merge step merges similar line segments. Thus, split and merge steps
adjust the number of model components to better fit the data.

5.1 Merging

If inequality (16) holds, we merge two model components represented by param-
eters l1, l2 into one model componet given by parameter l. While components
l1, l2 are present at step t (they are line segments sl1 , sl2), we did not yet spec-
ify hot to compute the candidate component l. Now we describe a particular
method to generate a candidate component l in the particular case in which the
model components are line segments. We stress that other methods are possible
and that inequality (16) applies to them too.

A support set S(sj) for a given line segment sj (model component l) is de-
fined as set of points whose probability of supporting segment sj is the largest,
i.e.,

S(sj) = {xi : wij = max(wi1, . . . , wik)}.

This maps each data point to a unique segment using the Maximum A Posteriori
principle. Given two line segments sl1 , sl2 , the merged segment sl is obtained by
trimming the straight line obtained by regression on data points in S(sl1)∪S(sl2).
Trimming is performed by line split described in Section 5.2.

5.2 Line Split (LS)

A classical case of EM local optimum problem is illustrated in Fig. 2(a), where
the line segment is in a locally optimal position. Clearly, the problem here is that
we have a model consisting of one line only, while two line segments are needed.
Fig. 2(b) illustrates a split operation described in this section. It is based on
removal of subsegments that do not have sufficient support in the data points.
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As the result we obtain two line segments. Finally, Fig. 2(c) shows the globally
optimal approximation of the data points obtained by EM applied to the two
segments.

The main idea is that higher point density along a segment indicates a presence
of a linear structure in the data points around the segment. Each line or line
segment is examined on having sufficient support in data points measured as
point density around it. Only parts of segments that have sufficient support of
the data points remain. This leads to split of existing lines or segments allowing
us to adjust the number of the line segments (i.e., the number of EM model
components) to better fit the input data points.

In [12] the number of points in discretely enumerated rectangular strips (e.g.,
neighborhoods of all possible segments with endpoints in some finite set) is
counted. Then signal strips are selected based on the ratio of the number of
points to the area. Then strips are grouped to polylines based on proximity of
their endpoints and their angles. The main difference of our approach to the
approach in [12] is that we do not select the signal segments, but evaluate the
existing structures selected by EM. This makes our computation more efficient,
since we do not need to numerate all possible strips, and more accurate, since
the line segments are optimally fitted to the data points in our approach.

Line Split (LS) is composed of the following steps:

(2.1) Subsegment support computation.
(2.2) Removal of subsegments with insufficient support that satisfy inequality

(15).

The input to LS are segments s1, . . . , sk obtained by clipping the lines l1, . . . , lk
created in EMSF to the image rectangle. We divide each segment sj ∈ {s1, . . . , sk}
into subsegments of a predefined length 2r, i.e., sj = Ij

1 ∪ . . . ∪ Ij
l , so that two

consecutive subsegments overlap in their common endpoint, where l is the number
of subsegments. (For simplicity we assume that the length of sj is exactly multiple
of 2r.) For each subsegment Ij

k, we define its support as the number of data points
in the square S(Ij

k) whose two sides are parallel to subsegment Ij
k and whose center

is contained in Ij
k, i.e.,

support(Ij
k) = #({xi} ∩ S(Ij

k)).

A few such squares are illustrated in Fig. 2(b).
In each iteration a support threshold C is computed from the statistics of

support(Ij
k) values over all subsegments of all line segments. Finally subseg-

ments Ij
k with support(Ij

k) ≤ C are removed. The subsegments to be removed
are marked with crosses in Fig. 2(b). New segments are created as connected
components of remaining subsegments of segment sj . If inequality (15) holds,
then the original input segment sj is removed, and the newly created segments
are added to the list of original segments for the next iteration of EMSF. If all
its subsegments are removed, then a given segment is removed.
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6 Applications

Two examples of approximations of point sets in digital images are illustrated
in Fig. 3. An example application of our approach in robot mapping is outlined
in Fig. 4. (a) shows an original data set of laser range scan points aligned with
the algorithm presented in [13]. The original set is composed of 395 scans, each
with 361 points. Thus, the original input map is composed of 142,595 points.
We initialize our algorithm with 192 segments, the grid segments, as model com-
ponents. (b) shows the output with 96 segments after the first iteration of our
algorithm. The final polygonal map in (c), obtained after 6 iterations, is com-
posed of 86 segments, i.e., of 172 points. Thus, the proposed approach yields the
data compression ratio of 829:1. The mean distance of scan points to the closest
line segments is 3.5cm. We selected this map, since it contains surfaces of curved
objects. The obtained polylines in (c) illustrate that the proposed approach is

−5 0 5 10 15

−6

−4

−2

0

2

4

6

8

10

−5 0 5 10

−5

0

5

10

−5 0 5 10

−5

0

5

10

(a) (b) (c)

Fig. 4. (a) An original outdoor map is composed of 142,595 scan points obtained during
the Rescue Robot Camp in Rome, 2004. We begin the approximation process with 192
line segments that form the grid. (b) shows the output after the first iteration of our
algorithm with 96 segments. (c) The final polygonal map obtained after 6 iterations
is composed of only 86 segments. The obtained compression rate is 829:1, and the
approximation accuracy is 3.5cm.
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Fig. 5. (a) An input surface with 744,450 sample points. (b) Approximation with 27
planar patches.
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well suited to approximate linear as well as curved surfaces. For more details on
the application of the proposed method in robot mapping see [14].

Examples illustrating fitting planar patches to 3D range data are given in [15].
Here we show only one example in Fig. 5. Fig. 5(a) shows a 3D projection of the
surface of some industrial part composed of 744,450 laser range scan points, ob-
tained from http://edge.cs.drexel.edu/Dmitriy/Scanned.tar.gz. Fig. 5(b)
shows our approximation with 27 planar patches. The mean distance of each
point to the closest surface patch is 0.49 with the original object size of 100 ×
90 × 100.

7 Conclusions

The combination of Expectation Maximization Segment Fitting with alternat-
ing Segment Splitting and Merging was proven to be a powerful tool to gain a
polyline representation of edge points in digital images, leading to a geometri-
cally higher representation and an excellent data compression rate. The newly
introduced, perceptual grouping based merging step balances the number of seg-
ments, created by partitioning and splitting, in a visually natural way and there-
fore allows for the number of starting segments for the EM step to be imprecise.
The extended EM algorithm is proven to yield globally optimal results.
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