Abstract
In this paper, we address the topic of monogenic curvature scale-space. Combining methods of tensor algebra, monogenic signal and quadrature filter, the monogenic curvature signal, as a novel model for intrinsically two-dimensional (i2D) structures, is derived in an algebraically extended framework. It is unified with a scale concept by employing damped spherical harmonics as basis functions. This results in a monogenic curvature scale-space. Local amplitude, phase and orientation, as independent local features, are extracted. In contrast to the Gaussian curvature scale-space, our approach has the advantage of simultaneous estimation of local phase and orientation. The main contribution is the rotationally invariant phase estimation in the scale-space, which delivers access to various phase-based applications in computer vision.
This work was supported by German Research Association (DFG) Graduiertenkolleg No. 357 (DZ) and Grant So-320/2-3 (GS).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Costabile, M.F., Guerra, C., Pieroni, G.G.: Matching shapes: a case study in time varying images. Computer Vision, Graphics and Image Processing 29, 296–310 (1985)
Han, M.H., Jang, D.: The use of maximum curvature points for the recognition of partially occluded objects. Pattern Recognition 23, 21–33 (1990)
Liu, H.C., Srinath, M.D.: Partial classification using contour matching in distance transformation. IEEE Transactions on Pattern Analysis and Matchine Intelligence 12, 1072–1079 (1990)
Wang, H., Brady, M.: Real-time corner detection algorithm for motion estimation. Image and Vision Computing 13, 695–703 (1995)
Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centers of circular features. In: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, pp. 281–305 (1987)
Köthe, U.: Integrated edge and junction detection with the boundary tensor. In: Proceeding of 9th Intl. Conf. on Computer Vision, vol. 1, pp. 424–431 (2003)
Krieger, G., Zetzsche, C.: Nonlinear image operators for the evaluation of local intrinsic dimensionality. IEEE Transactions on Image Processing 5 (1996)
Oppenheim, A.V., Lim, J.S.: The importance of phase in signals. IEEE Proceedings 69, 529–541 (1981)
Mokhtarian, F., Suomela, R.: Curvature scale space for robust image corner detection. In: Proc. 14th International Conference on Pattern Recognition (ICPR 1998), vol. 2, pp. 1819–1821 (1998)
Mokhtarian, F., Bober, M.: Curvature scale space representation: theory, applications, and MPEG-7 standardization. Kluwer Academic Publishers, Dordrecht (2003)
Jalba, A.C., Wilkinson, M.H.F., Roerdink, J.B.T.M.: Shape representation and recognition through morphological curvature scale spaces. IEEE Trans. Image Processing 15, 331–341 (2006)
Bülow, T., Sommer, G.: Hypercomplex signals - a novel extension of the analytic signal to the multidimensional case. IEEE Transactions on Signal Processing 49, 2844–2852 (2001)
Felsberg, M., Sommer, G.: The monogenic signal. IEEE Transactions on Signal Processing 49, 3136–3144 (2001)
Felsberg, M.: Low-level image processing with the structure multivector. Technical Report 2016, Christian-Albrechts-Universität zu Kiel, Institut für Informatik und Praktische Mathematik (2002)
Lounesto, P.: Clifford Algebras and Spinors. Cambridge University Press, Cambridge (1997)
Ablamowicz, R.: Clifford Algebras with Numeric and Symbolic Computations. Birkhäuser, Boston (1996)
Hestenes, D., Li, H., Rockwood, A.: Geometric computing with clifford algebras. In: Sommer, G. (ed.) New Algebraic Tools for Classical Geometry, pp. 3–23. Springer, Heidelberg (2001)
Sommer, G., Zang, D.: Parity symmetry in multi-dimensional signals. In: Proc. of the 4th International Conference on Wavelet Analysis and its Applications, Macao (2005)
Felsberg, M., Sommer, G.: The monogenic scale-space: A unifying approach to phase-based image processing in scale-space. Journal of Mathematical Imaging and Vision 21, 5–26 (2004)
Stein, E., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, New Jersey (1971)
Sobczyk, G., Erlebacher, G.: Hybrid matrix geometric algebra. In: Li, H., Olver, P.J., Sommer, G. (eds.) IWMM-GIAE 2004. LNCS, vol. 3519, pp. 191–206. Springer, Heidelberg (2005)
Bracewell, R.: Fourier Analysis and Imaging. Kluwer Academic / Plenum Publishers, New York (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Zang, D., Sommer, G. (2006). The Monogenic Curvature Scale-Space. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds) Combinatorial Image Analysis. IWCIA 2006. Lecture Notes in Computer Science, vol 4040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11774938_25
Download citation
DOI: https://doi.org/10.1007/11774938_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35153-5
Online ISBN: 978-3-540-35154-2
eBook Packages: Computer ScienceComputer Science (R0)