Skip to main content

Shortest Paths in a Cuboidal World

  • Conference paper
Combinatorial Image Analysis (IWCIA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4040))

Included in the following conference series:

Abstract

Since 1987 it is known that the Euclidean shortest path problem is NP-hard. However, if the 3D world is subdivided into cubes, all of the same size, defining obstacles or possible spaces to move in, then the Euclidean shortest path problem has a linear-time solution, if all spaces to move in form a simple cube-curve. The shortest path through a simple cube-curve in the orthogonal 3D grid is a minimum-length polygonal curve (MLP for short). So far only one general and linear (only with respect to measured run times) algorithm, called the rubberband algorithm, was known for an approximative calculation of an MLP. The algorithm is basically defined by moves of vertices along critical edges (i.e., edges in three cubes of the given cube-curve). A proof, that this algorithm always converges to the correct MLP, and if so, then always (provable) in linear time, was still an open problem so far (the authors had successfully treated only a very special case of simple cube-curves before). In a previous paper, the authors also showed that the original rubberband algorithm required a (minor) correction.

This paper finally answers the open problem: by a further modification of the corrected rubberband algorithm, it turns into a provable linear-time algorithm for calculating the MLP of any simple cube-curve.

The paper also presents an alternative provable linear-time algorithm for the same task, which is based on moving vertices within faces of cubes.

For a disticntion, we call the modified original algorithm now the edge-based rubberband algorithm, and the second algorithm is the face-based rubberband algorithm; the time complexity of both is in \({\cal O}(m)\), where m is the number of critical edges of the given simple cube-curve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bülow, T., Klette, R.: Digital curves in 3D space and a linear-time length estimation algorithm. IEEE Trans. Pattern Analysis Machine Intell. 24, 962–970 (2002)

    Article  Google Scholar 

  2. Canny, J., Reif, J.H.: New lower bound techniques for robot motion planning problems. In: Proc. IEEE Conf. Foundations Computer Science, pp. 49–60 (1987)

    Google Scholar 

  3. Choi, J., Sellen, J., Yap, C.-K.: Approximate Euclidean shortest path in 3-space. In: Proc. ACM Conf. Computational Geometry, pp. 41–48. ACM Press, New York (1994)

    Google Scholar 

  4. Coeurjolly, D., Debled-Rennesson, I., Teytaud, O.: Segmentation and length estimation of 3D discrete curves. In: Bertrand, G., Imiya, A., Klette, R. (eds.) Dagstuhl Seminar 2000. LNCS, vol. 2243, pp. 299–317. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  5. Dror, M., Efrat, A., Lubiw, A., Mitchell, J.: Touring a sequence of polygons. In: Proc. STOC, pp. 473–482 (2003)

    Google Scholar 

  6. Ficarra, E., Benini, L., Macii, E., Zuccheri, G.: Automated DNA fragments recognition and sizing through AFM image processing. IEEE Trans. Inf. Technol. Biomed. 9, 508–517 (2005)

    Article  Google Scholar 

  7. Jonas, A., Kiryati, N.: Length estimation in 3-D using cube quantization. J. Math. Imaging and Vision 8, 215–238 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Karavelas, M.I., Guibas, L.J.: Static and kinetic geometric spanners with applications. In: Proc. ACM-SIAM Symp. Discrete Algorithms, pp. 168–176 (2001)

    Google Scholar 

  9. Klette, R., Bülow, T.: Critical edges in simple cube-curves. In: Nyström, I., Sanniti di Baja, G., Borgefors, G. (eds.) DGCI 2000. LNCS, vol. 1953, pp. 467–478. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  10. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    MATH  Google Scholar 

  11. Li, F., Klette, R.: Minimum-length polygon of a simple cube-curve in 3D space. In: Klette, R., Žunić, J. (eds.) IWCIA 2004. LNCS, vol. 3322, pp. 502–511. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  12. Li, F., Klette, R.: The class of simple cube-curves whose MLPs cannot have vertices at grid points. In: Andrès, É., Damiand, G., Lienhardt, P. (eds.) DGCI 2005. LNCS, vol. 3429, pp. 183–194. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Li, F., Klette, R.: Minimum-Length Polygons of First-Class Simple Cube-Curve. In: Gagalowicz, A., Philips, W. (eds.) CAIP 2005. LNCS, vol. 3691, pp. 321–329. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Li, F., Klette, R.: Analysis of the rubberband algorithm. Technical Report CITR-TR-175, Computer Science Department, The University of Auckland, Auckland, New Zealand (2006), www.citr.auckland.ac.nz

  15. Li, T.-Y., Chen, P.-F., Huang, P.-Z.: Motion for humanoid walking in a layered environment. In: Proc. Conf. Robotics Automation, vol. 3, pp. 3421–3427 (2003)

    Google Scholar 

  16. Luo, H., Eleftheriadis, A.: Rubberband: an improved graph search algorithm for interactive object segmentation. In: Proc. Int. Conf. Image Processing, vol. 1, pp. 101–104 (2002)

    Google Scholar 

  17. Sklansky, J., Kibler, D.F.: A theory of nonuniformly digitized binary pictures. IEEE Trans. Systems Man Cybernetics 6, 637–647 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sloboda, F., Zaťko, B., Klette, R.: On the topology of grid continua. In: Proc. Vision Geometry, SPIE, vol. 3454 (1998)

    Google Scholar 

  19. Sloboda, F., Zaťko, B., Stoer, J.: On approximation of planar one-dimensional grid continua. In: Klette, R., Rosenfeld, A., Sloboda, F. (eds.) Advances in Digital and Computational Geometry, pp. 113–160. Springer, Singapore (1998)

    Google Scholar 

  20. Sun, C., Pallottino, S.: Circular shortest path on regular grids. CSIRO Math. Information Sciences, CMIS Report No. 01/76, Australia (2001)

    Google Scholar 

  21. Talbot, M.: A dynamical programming solution for shortest path itineraries in robotics. Electr. J. Undergrad. Math. 9, 21–35 (2004)

    Google Scholar 

  22. Wolber, R., Stäb, F., Max, H., Wehmeyer, A., Hadshiew, I., Wenck, H., Rippke, F., Wittern, K.: Alpha-Glucosylrutin: Ein hochwirksams Flavonoid zum Schutz vor oxidativem Stress. J. German Society Dermatology 2, 580–587 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, F., Klette, R. (2006). Shortest Paths in a Cuboidal World. In: Reulke, R., Eckardt, U., Flach, B., Knauer, U., Polthier, K. (eds) Combinatorial Image Analysis. IWCIA 2006. Lecture Notes in Computer Science, vol 4040. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11774938_33

Download citation

  • DOI: https://doi.org/10.1007/11774938_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35153-5

  • Online ISBN: 978-3-540-35154-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics