Skip to main content

Throwing Stones Inside Simple Polygons

  • Conference paper
Algorithmic Aspects in Information and Management (AAIM 2006)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4041))

Included in the following conference series:

  • 776 Accesses

Abstract

Given two sets A and B of m non-intersecting line segments in the plane, we show how to compute in O(m logm) time a data structure that uses O(m) space and allows to answer the following query in O(logm) time: Given a parabola γ: y = ax 2 + bx + c, does γ separate A and B? This structure can be used to build a data structure that stores a simple polygon and allows ray-shooting queries along parabolic trajectories with vertical main axis. For a polygon with complexity n, we can answer such “stone throwing” queries in O(log2 n) time, using O(n logn) space and O(n log2 n) preprocessing time. This matches the best known bound for circular ray shooting in simple polygons.

This research was supported by the French-Korean Science and Technology Amicable Relationships program (STAR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Agarwal, P., Sharir, M.: Circle shooting in a simple polygon. J. Algorithms 14, 69–87 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahn, H.-K., Cheong, O., van Oostrum, R.: Casting a polyhedron with directional uncertainty. Computational Geometry: Theory and Applications 26, 129–141 (2003)

    MATH  MathSciNet  Google Scholar 

  3. Bae, S.-W., Chwa, K.-Y.: Voronoi diagrams with a transportation network on the Euclidean plane. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 101–112. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Cheng, S.-W., Cheong, O., Everett, H., van Oostrum, R.: Hierarchical decompositions and circular ray shooting in simple polygons. Discrete Comput. Geom. 32, 401–415 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Berlin (2000)

    MATH  Google Scholar 

  6. Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: Shoot a ray, take a walk. J. Algorithms 18, 403–431 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  8. Klein, R., Mehlhorn, K., Meiser, S.: Randomized incremental construction of abstract Voronoi diagrams. Computational Geometry 3, 157–184 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Sharir, M., Shaul, H.: Ray shooting and stone throwing with near-linear storage. Computational Geometry 30, 239–252 (2005)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cheong, O., Everett, H., Kim, HS., Lazard, S., Schott, R. (2006). Throwing Stones Inside Simple Polygons. In: Cheng, SW., Poon, C.K. (eds) Algorithmic Aspects in Information and Management. AAIM 2006. Lecture Notes in Computer Science, vol 4041. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11775096_18

Download citation

  • DOI: https://doi.org/10.1007/11775096_18

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35157-3

  • Online ISBN: 978-3-540-35158-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics