Skip to main content

Optimal Placement and Selection of Camera Network Nodes for Target Localization

  • Conference paper
Distributed Computing in Sensor Systems (DCOSS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4026))

Included in the following conference series:

  • 1424 Accesses

Abstract

The paper studies the optimal placement of multiple cameras and the selection of the best subset of cameras for single target localization in the framework of sensor networks. The cameras are assumed to be aimed horizontally around a room. To conserve both computation and communication energy, each camera reduces its image to a binary “scan-line” by performing simple background subtraction followed by vertical summing and thresholding, and communicates only the center of the detected foreground object. Assuming noisy camera measurements and an object prior, the minimum mean squared error of the best linear estimate of the object location in 2-D is used as a metric for placement and selection. The placement problem is shown to be equivalent to a classical inverse kinematics robotics problem, which can be solved efficiently using gradient descent techniques. The selection problem on the other hand is a combinatorial optimization problem and finding the optimal solution can be too costly to implement in an energy-constrained wireless camera network. A semi-definite programming approximation for the problem is shown to achieve close to optimal solutions with much lower computational burden. Simulation and experimental results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Pottie, G.J., Kaiser, W.J., Clare, L., Marcy, H.: Wireless integrated network sensors. Communications of the ACM 43(5), 51–58 (2000)

    Article  Google Scholar 

  2. Akyildiz, I.F., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless sensor networks: A survey. Computer Networks 38, 393–422 (2002)

    Article  Google Scholar 

  3. Mainwaring, A., Polastre, J., Szewczyk, R., Culler, D., Anderson, J.: Wireless sensor networks for habitat monitoring. In: Proceedings of First International Workshop on Sensor Networks and Applications (2002)

    Google Scholar 

  4. Yazawa, Y., Oonishi, T., Watanabe, K., Nemoto, R., Kamahori, M., Hasebe, T., Akamatsu, Y.: A wireless biosensing chip for DNA detection. In: Proceedings of ISSCC 2005 (2005)

    Google Scholar 

  5. Yang, D.B.R., Shin, J.-W., Ercan, A.O., Guibas, L.J.: Sensor tasking for occupancy reasoning in a network of cameras. In: Proceedings of BASENETS 2004 (2004)

    Google Scholar 

  6. Chen, X., Davis, J.: Camera placement considering occlusion for robust motion capture. Stanford University Computer Science Technical Report, CS-TR-2000-07 (2000)

    Google Scholar 

  7. Olague, G., Mohr, R.: Optimal camera placement for accurate reconstruction. Pattern Recognition 35(4), 927–944 (2002)

    Article  MATH  Google Scholar 

  8. Wu, J., Sharma, R., Huang, T.: Analysis of uncertainty bounds due to quantization for three-dimensional position estimation using multiple cameras. Optical Engineering 37, 280–292 (1998)

    Article  Google Scholar 

  9. Zhang, H.: Two-dimensional optimal sensor placement. IEEE Transactions on Systems, Man, and Cybernetics 25 (1995)

    Google Scholar 

  10. Chu, M., Haussecker, H., Zhao, F.: Scalable information-driven sensor querying and routing for ad hoc heterogeneous sensor networks. The International Journal of High Performance Computing Applications 16, 293–313 (2002)

    Article  Google Scholar 

  11. Ertin, E., Fisher III, J.W., Potter, L.C.: Maximum mutual information principle for dynamic sensor query problems. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 405–416. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  12. Wang, H., Yao, K., Pottie, G., Estrin, D.: Entropy-based sensor selection heuristic for localization. In: Proceedings of IPSN 2004 (2004)

    Google Scholar 

  13. Vazquez, P.P., Feixas, M., Sbert, M., Heidrich, W.: Viewpoint selection using viewpoint entropy. In: Proceedings of the Vision Modeling and Visualization 2001 (2001)

    Google Scholar 

  14. Wong, L.M., Dumont, C., Abidi, M.: Next best view system in a 3D object modeling task. In: Proceedings of Computational Intelligence in Robotics and Automation (1999)

    Google Scholar 

  15. Roberts, D.R., Marshall, A.D.: Viewpoint selection for complete surface coverage of three dimensional objects. In: Proceedings of the British Machine Vision Conference (1998)

    Google Scholar 

  16. Welman, C.: Inverse kinematics and geometric constraints for articulated figuremanipulation. Master’s Thesis, Simon Fraser University (1993)

    Google Scholar 

  17. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for (0,1)-quadratic programming. Journal of Global Optimization 7, 51–73 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Goldenberg, A.A., Benhabib, B., Fenton, R.G.: A complete generalized solution to the inverse kinematics of robots. IEEE Journal of Robotics and Automation RA-1, 14–20 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ercan, A.O., Yang, D.B., El Gamal, A., Guibas, L.J. (2006). Optimal Placement and Selection of Camera Network Nodes for Target Localization. In: Gibbons, P.B., Abdelzaher, T., Aspnes, J., Rao, R. (eds) Distributed Computing in Sensor Systems. DCOSS 2006. Lecture Notes in Computer Science, vol 4026. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11776178_24

Download citation

  • DOI: https://doi.org/10.1007/11776178_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35227-3

  • Online ISBN: 978-3-540-35228-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics