Skip to main content

The Rademacher Complexity of Linear Transformation Classes

  • Conference paper
Learning Theory (COLT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4005))

Included in the following conference series:

Abstract

Bounds are given for the empirical and expected Rademacher complexity of classes of linear transformations from a Hilbert space H to a finite dimensional space. The results imply generalization guarantees for graph regularization and multi-task subspace learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ando, R.K., Zhang, T.: A framework for learning predictive structures from multiple tasks and unlabeled data. Journal of Machine Learning Research 6, 1817–1853 (2005)

    MathSciNet  Google Scholar 

  2. Bartlett, P.L., Mendelson, S.: Rademacher and Gaussian Complexities: Risk Bounds and Structural Results. Journal of Machine Learning Research 3, 463–482 (2002)

    Article  MathSciNet  Google Scholar 

  3. Bartlett, P., Bousquet, O., Mendelson, S.: Local Rademacher complexities. Available online: http://www.stat.berkeley.edu/~bartlett/papers/bbm-lrc-02b.pdf

  4. Baxter, J.: Theoretical Models of Learning to Learn. In: Thrun, S., Pratt, L. (eds.) Learning to Learn, Springer, Heidelberg (1998)

    Google Scholar 

  5. Baxter, J.: A Model of Inductive Bias Learning. Journal of Artificial Intelligence Research 12, 149–198 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Ben-David, S., Schuller, R.: Exploiting task relatedness for multiple task learning. In: COLT 2003 (2003)

    Google Scholar 

  7. Caruana, R.: Multitask Learning. In: Thrun, S., Pratt, L. (eds.) Learning to Learn, Springer, Heidelberg (1998)

    Google Scholar 

  8. Evgeniou, T., Pontil, M.: Regularized multi-task learning. In: Proc. Conference on Knowledge Discovery and Data Mining (2004)

    Google Scholar 

  9. Evgeniou, T., Micchelli, C., Pontil, M.: Learning multiple tasks with kernel methods. JMLR 6, 615–637 (2005)

    MathSciNet  Google Scholar 

  10. Koltchinskii, V., Panchenko, D.: Empirical margin distributions and bounding the generalization error of combined classifiers. The Annals of Statistics 30(1), 1–50

    Google Scholar 

  11. Ledoux, M., Talagrand, M.: Probability in Banach Spaces: isoperimetry and processes. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  12. Maurer, A.: Bounds for linear multi-task learning. Journal of Machine Learning Research 7, 117–139 (2006)

    MathSciNet  Google Scholar 

  13. Reed, M., Simon, B.: Fourier Analysis, Self-Adjointness, Methods of Mathematical Physics, part II. Academic Press, London (1980)

    Google Scholar 

  14. Reed, M., Simon, B.: Functional Analysis. Methods of Mathematical Physics, vol. I. Academic Press, London (1980)

    MATH  Google Scholar 

  15. Thrun, S.: Lifelong Learning Algorithms. In: Thrun, S., Pratt, L. (eds.) Learning to Learn, Springer, Heidelberg (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Maurer, A. (2006). The Rademacher Complexity of Linear Transformation Classes. In: Lugosi, G., Simon, H.U. (eds) Learning Theory. COLT 2006. Lecture Notes in Computer Science(), vol 4005. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11776420_8

Download citation

  • DOI: https://doi.org/10.1007/11776420_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35294-5

  • Online ISBN: 978-3-540-35296-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics