Skip to main content

Worst Case Analysis of Batch Arrivals with the Increasing Convex Ordering

  • Conference paper
Formal Methods and Stochastic Models for Performance Evaluation (EPEW 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4054))

Included in the following conference series:

  • 318 Accesses

Abstract

We consider a finite buffer queue with one deterministic server fed by packets arriving in batches. We assume that we are not able to fully describe the batch distribution: only the maximal size and the average number of packets are supposed known. Indeed, these two quantities are simple to measure in a real system. We additionally allow the batch distribution to be state dependent. We analyze the worst case distribution of the queue length and the expectation of lost packets per slot. We show that the increasing convex ordering provides tight bounds for such a system.

This work was supported by project Sure-Paths from ACI and the French “programme blanc” project SMS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Willey, New York (1992)

    MATH  Google Scholar 

  2. Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York (1975)

    MATH  Google Scholar 

  3. Ben Mamoun, M.: Encadrements stochastiques et évaluation de performances des réseaux. PhD thesis, Université de Versailles Saint-Quentin-en-Yvelines (2002)

    Google Scholar 

  4. Ben Mamoun, M., Busic, A., Fourneau, J.-M., Pekergin, N.: Increasing convex monotone Markov chains: Theory, algorithm and applications. In: Markov Anniversary Meeting, Charleston, SC (June 2006 ) (accepted)

    Google Scholar 

  5. Buchholz, P.: An improved method for bounding stationary measures of finite Markov processes. Performance Evaluation 62, 349–365 (2005)

    Article  Google Scholar 

  6. Dayar, T., Fourneau, J.-M., Pekergin, N.: Transforming stochastic matrices for stochastic comparison with the st-order. RAIRO Operations Research 37, 85–97 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Grasman, W.K., Taksar, M.I., Heyman, D.P.: Regenerative analysis and steady-state distributions for Markov chains. Oper. Res. 13, 1107–1116 (1985)

    Article  Google Scholar 

  8. Gravey, P., Gosselin, S., Guillemot, C., Chiaroni, D., Le Sauze, N., Jourdan, A., Dotaro, E., Barth, D., Berthomé, P., Laforest, C., Vial, S., Atmaca, T., Hébuterne, G., El Biaze, H., Laalaoua, R., Gangloff, E., Kotuliak, I.: Multiservice optical network: Main concepts and first achievements of the ROM program. Journal of Ligthwave Technology 19, 23–31 (2001)

    Article  Google Scholar 

  9. Haddad, S., Moreaux, P.: Sub-stochastic matrix analysis for bounds computation: Theoretical results. European Journal of Operational Research (to appear)

    Google Scholar 

  10. Hordijk, A.: Comparison of queues with different discrete-time arrival processes. Probability in the Engineering and Informational Sciences 15, 1–14 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Koole, G., Nuyens, M., Righter, R.: The effect of service time variability on maximum queue lengths in M X/G/1 queues. Journal of Applied Probability 42(3), 883–891 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. Li, H., Shaked, M.: Stochastic convexity and concavity of Markov processes. Mathematics of Operations Research 19(2), 477–493 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Muller, A., Stoyan, D.: Comparison Methods for Stochastic Models and Risks. Wiley, New York (2002)

    Google Scholar 

  14. de Prycker, M.: Asynchronous transfer mode: solution for broadband ISDN, 2nd edn. Ellis Horwood, Upper Saddle River (1993)

    Google Scholar 

  15. Shaked, M., Shantikumar, J.G.: Stochastic Orders and their Applications. Academic Press, San Diego (1994)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bušić, A., Fourneau, JM., Pekergin, N. (2006). Worst Case Analysis of Batch Arrivals with the Increasing Convex Ordering. In: Horváth, A., Telek, M. (eds) Formal Methods and Stochastic Models for Performance Evaluation. EPEW 2006. Lecture Notes in Computer Science, vol 4054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11777830_14

Download citation

  • DOI: https://doi.org/10.1007/11777830_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35362-1

  • Online ISBN: 978-3-540-35365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics