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Abstract. PEPA has recently been extended with functional rates
[1][2]. These functions allow the specification of indirect interaction be-
tween components in such a way that the rate of an activity may be
made dependent on the local state currently exhibited by one or more
components. In this paper we demonstrate that these rates allow a sys-
tematic simplification of models in which there is appropriate indirect
interaction between components. We investigate the interplay between
this style of simplification and aggregation based on bisimulation, and
establish a heuristic for applying both techniques in a complementary
fashion.

1 Introduction

State space explosion remains the prevailing problem of most state-based mod-
elling techniques. In general we focus on the impact of this problem on model
solution when the size of the matrix representing the model becomes so large
that the solution is intractable. However the largeness of models has other impli-
cations for the modelling process. During model construction the complexity of
the system being represented may make it difficult for the modeller to keep track
of all necessary aspects in the model. Compositional modelling techniques, such
as stochastic process algebras, go some way towards alleviating this problem by
supporting a divide-and-conquer approach to system representation. Neverthe-
less the number of components involved may still become large, representing a
cognitive burden on the modeller.

In this paper we present a technique which aims to identify cases where com-
ponents may be eliminated from a model description. In the simplest such cases
the component may be eliminated without significant change to the remain-
ing components. However, in general, these components may be playing a vital
role within the model which must still be captured. In this case we achieve
the same behaviour by the use of functional rates within the remaining compo-
nents. Eliminating components in this way addresses the two issues of complexity
� This work was partially supported by the DEGAS IST-2001-32072, SENSORIA IST-

3-016004-IP-09 funded by the FET Proactive Initiative on Global Computing and
by EPSRC Advanced Research Fellowship EP/c543696/01.
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discussed above. The model construction complexity is reduced, as the expression
of the model is now made in terms of a fewer number of components. Moreover,
the internal representation of the model is also, in general, more compact, as the
functional rates allow a reduction in the size of the corresponding matrix. For
a formalism like PEPA, for which a Kronecker representation has been devel-
oped [1], the reduction of the number of components in a model implies also the
reduction of the number of matrices required for the tensorial representation of
the corresponding Markov chain.

Since we aim to preserve the same behaviour the underlying Markov process
remains unchanged and so the reachable state space is not reduced. Nevertheless
we feel that this approach can be regarded as a model simplification technique
since it has the effect of extending the class of tractable models.

The rest of this paper is structured as follows. In the following section, we
give a brief overview of PEPA. We then go on to explain the version of PEPA
extended with functional rates that we will use in this paper. In Section 3 we
give a definition of the notion of function-equivalent components and show how
functional rates may be used to eliminate these components from a model. In
Section 5 we investigate the interplay between the model-level simplification
approach based on function-equivalent components and the state-level aggrega-
tion technique based on the bisimulation relation, strong equivalence. This is
illustrated by a small example. We present the algorithm for the automatic re-
moval of function-equivalent components and demonstrate its application to a
larger example in Section 6. We discuss related work in Section 7. Finally, we con-
clude in Section 8 with a summary of the results and a discussion of future work.

2 PEPA

In PEPA a system is described as an interaction of components which engage, ei-
ther singly or multiply, in activities. These basic elements of PEPA, components
and activities, correspond to states and transitions in the underlying Markov
process. Each activity has an action type. Activities which are private to the
component in which they occur are represented by the distinguished action type,
τ . The duration of each activity is represented by the parameter of the associated
exponential distribution: the activity rate. This parameter may be any positive
real number, or the distinguished symbol � (read as unspecified). Thus each
activity, a, is a pair (α, r) consisting of the action type and the activity rate re-
spectively. We assume a countable set of components, denoted C, and a countable
set, A, of all possible action types. We denote by Act ⊆ A×R

+, the set of activ-
ities, where R

+ is the set of positive real numbers together with the symbol �.
PEPA provides a small set of combinators which allow expressions to be con-

structed defining the behaviour of components, via the activities they undertake
and the interactions between them.
Prefix (α, r).P : This is the basic mechanism for constructing component be-
haviours. The component carries out activity (α, r) and subsequently behaves as
component P .
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Choice P +Q: This component may behave either as P or as Q: all the current
activities of both components are enabled. The first activity to complete, deter-
mined by a race condition, distinguishes one component, the other is discarded.

Cooperation P ��
L

Q: Components proceed independently with any activities
whose types do not occur in the cooperation set L (individual activities). How-
ever, activities with action types in the set L require the simultaneous involve-
ment of both components (shared activities). When the set L is empty, we use
the more concise notation P ‖ Q to represent P ��

∅
Q.

The published stochastic process algebras differ on how the rate of shared
activities are defined [4]. In PEPA the shared activity occurs at the rate of
the slowest participant. If an activity has an unspecified rate, denoted �, the
component is passive with respect to that action type. This means that the
component does not influence the rate at which any shared activity occurs.

Hiding P/L: This behaves as P except that any activities of types within the
set L are hidden, i.e. they exhibit the unknown type τ and can be regarded as
an internal delay by the component. These activities cannot be carried out in
cooperation with another component.

Constant A
def= P : Constants are components whose meaning is given by a

defining equation. A
def= P gives the constant A the behaviour of the component

P . This is how we assign names to components (behaviours).

The evolution of a model is governed by the structured operational semantics
rules of the language. These define the admissible transitions or state changes as-
sociated with each combinator. A race condition governs the dynamic behaviour
of a model whenever more than one activity is enabled.

The action types which the component P may next engage in are the current
action types of P , a set denoted A(P ). This set is defined inductively over the
syntactic constructs of the language [3]. For example, A(P +Q) = A(P )∪A(Q).

The activities which the component P may next engage in are the current
activities of P , a multiset denoted Act(P ). When the system is behaving as
component P these are the activities which are enabled. Note that the dynamic
behaviour of a component depends on the number of instances of each enabled
activity and therefore we consider multisets of activities as opposed to sets of
action types. Act(P ) is defined inductively over the structure of P .

The “states” of a PEPA model as it evolves are the syntactic terms, or deriva-
tives, which the model will go through. The derivative set of a PEPA component
C is denoted ds(C) and is the set of components which capture all the reachable
states of the system. It is also necessary to refer to the complete set of action
types which are used within the behaviour of a component C, i.e. all the possible
action types which may be witnessed as a component evolves. This set will be
denoted A(C). The complete action type set of a component C is:

A(C) =
⋃

C′∈ds(C)

A(C′).
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Since we aim to undertake numerical solution it is important that we ensure
that the components within the model, as well as the model itself, are finite
and ergodic. Necessary (but not sufficient) conditions for the ergodicity of the
Markov process in terms of the structure of the PEPA model have been identified
and can be readily checked [3]. These conditions imply that the model must be
a cyclic PEPA component.

A cyclic component is one in which behaviour may always be repeated, how-
ever the model evolves from this component it will always eventually return to
this component and this set of behaviours. This leads us to define the syntax of
PEPA expressions in terms of sequential components S and model components P :

P ::= P ��
L

P | P/L | A S ::= (α, r).S | S + S | AS

where A denotes a constant which is either a sequential or a model component
and AS denotes a constant which is a sequential component.

When a model component is defined it consists of one or more cooperating
components, and these cooperating components remain apparent in every deriva-
tive of the model. Thus the sequential components involved in a model, and the
cooperation sets in operation between them, will remain static throughout its
evolution. Only the particular derivatives exhibited by each of the sequential
components may change.

2.1 PEPA with Functional Rates

A functional dependency may involve one or several components. In a functional
dependency involving a single component, the rate value of an activity of the
component depends on the current state of the component itself. This is equiva-
lent to the presence of several apparent rates for the activity in the component.
Since each activity is represented explicitly in each local state it has always been
possible to capture this form of dependency in PEPA. When this is expressed
as a functional dependency, the rate value expressed as a function of the current
component state is still a positive real number and can never be zero. This adds
nothing new to the expressiveness of the language.

In contrast the ability to have an activity rate which is dependent on the local
state of another component has not been possible previously (except in the spe-
cial circumstance of shared activities). The introduction of this form of functional
dependency intoPEPAallows the dependent rate to include the value zero, indicat-
ing that an activity is blocked by the local state of another component. When the
dependency is between two or more components it implies that either the activity
to be performed by the first component and/or its rate value will be determined
by the current state of the other component(s). The rate value may then be any
non-negative real number R

+ including zero, particularly when the choice of the
activity to be performed is done according to the state of another component.

The introduction of functional dependencies in PEPA therefore requires us to
relax the constraint on the definition domain of an activity rate. Thus, the set of ac-
tivities Act is now defined as Act ⊆ A×R

∗ where R
∗ is the set of non-negative real
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numbers together with symbol �. The syntax of sequential components is modified
to allow an activity to be defined in terms of an action type and an expression e,
which can be either a rate, or a function, or a product of a rate and a function [1, 2].

S ::= (α, e).S | S + S | A e ::= r | f | r × f | �

where f : 2C −→ R
∗ is a function from one or more components to the non-

negative reals.

3 Function-Equivalent Components in PEPA

In this section we give a formal definition of the notion of function-equivalent
components and show that PEPA models can be reduced by eliminating this type
of component. This definition is the basis for automatically detecting suitable
components within a model.

A sequential component Sk is a function-equivalent component in a model
component C if Sk is a sequential component of C and for all derivatives Ci ∈
ds(C) given the current derivatives of the other sequential components Sji , j �= k
of the model, the current derivative of Sk, Ski , can be inferred. This definition
implies that the function-equivalent component interacts with other components
of the model in such a way that its states can always be inferred from the states
of these components. For this to be the case it follows that the component never
acts independently and all its activities are carried out in cooperation with the
other components. As we will show later in the paper, if a sequential component
is shown to be a function-equivalent component, then this component can be
eliminated and replaced by appropriate functions in the other components of
the model.

In order to formalise the definition of a function-equivalent component we
consider first when a component can be identified as having no independent
activities. Within a model component, each sequential component may be within
the scope of several cooperation sets. For example, in the component

X
def= (P ��

L
R) ��

K
(S ��

N
T )

the subcomponent R can act independently on any action types in the set N
which do not occur in K or L, but must have the cooperation of other subcom-
ponents to achieve actions in the set L ∪ K, whereas the subcomponent S can
act independently on any action types in the set L \ (K ∪ N), but must have
the cooperation of other subcomponents to achieve actions in the set K ∪ N .
Thus we can identify the interface of a component i.e. those activities on which
it must interact. In the following we formalise this idea. First, we define a partial
order, ≺, over components, which captures the notion of being a subcomponent :

Definition 1 (Subcomponents)

1. R ≺ P if R ∈ ds(P )
2. R ≺ P + Q if (R ≺ P ) ∨ (R ≺ Q)
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3. R ≺ P ��
L

Q if (R ≺ P ) ∨ (R ≺ Q)
4. R ≺ P/L if R ≺ P

5. R ≺ A if (A def= P ) ∧ (R ≺ P )

The interface of a sequential component within a component model is defined to
be the union of all the cooperation sets whose scope includes the component R.

Definition 2 (Interface). For any sequential component R within a model com-
ponent C (i.e. R ≺ C) the interface of R within C, denoted I(C :: R), is the set of
action types on which R is required to cooperate. It is defined in terms of the sub-
sidiary function J ; I(P :: R) = J (P :: R, ∅), where J is defined as follows

1. J (R :: R, K) = K
2. J (P ��

L
Q :: R, K) = K ′ ∪ K ′′ if J (P :: R, K ∪ L) = K ′

and J (Q :: R, K ∪ L) = K ′′

3. J (P/L :: R, K) = J (P :: R, K \ L)
4. J (A :: R, K) = J (P :: R, K) if A

def= P
5. J (R′ :: R, K) = ∅ if R ≺/ R′.

When all the possible actions of a sequential component are constrained by its
interface the component is never free to act independently; it must cooperate
with other components to complete any action. Such a component can be viewed
as being subservient to the rest of the model, and is called a resource component.

Definition 3 (Resource Components). A sequential component R in a mo-
del C is a resource component if there is only one instance of R within C and
the complete action type set of R is a subset of its interface within C, i.e.

A(R) ⊆ I(C :: R)

or if each instance of R is a resource component within a submodel C′ of C and
the submodels are independent of each other (i.e. composed using ‖).

Example 1: A distributed memory system. Consider a system in which
two processors act independently using two different memory elements. Each
processor accesses to the data in its memory element, does computations and
finally stores the results in its memory. As the access to the memory elements
to get or save the data is defined by the processors, both memory elements can
be modelled using the same component Memory.

Proc1
def= (get, p1).(compute, p2).Proc′1 Proc2

def= (get, q1).(compute, q2).Proc′2
Proc′1

def= (save, p3).Proc1 Proc′2
def= (save, q3).Proc2

Memory def= (get, �).(save, �).Memory
System1

def= (Memory ��
{get,save}

Proc1) ‖ (Memory ��
{get,save}

Proc2)

In this model defined by System1, Memory is a resource component because
each of its instances in the model must synchronise on both activities get and
save.
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Example 2: Consider the following model components

R
def= (α, rα).(β, rβ).R P

def= (α, r1).P Q
def= (β, r2).Q

System2
def= (R ��

{α}
P ) ‖ (R ��

{β}
Q)

In contrast, in this model, R is not a resource component since it can behave
independently: one instance can act independently on α and the other can act
independently on β.

In the following, we will focus on a particular class of resource components
termed simple resource components. A sequential component R is a simple com-
ponent if

R ≡ S1 + S2 + · · · + Sn

for some distinct cyclic components S1, S2, . . . Sn constructed using only prefix,
with no repeated activities within a cycle and such that the last action of each
cycle returns to R.

If a resource component is simple it implies that it offers alternative behaviours
through its interface but once one of those behaviours is chosen (on the first
action) the pattern of behaviour is set until the chosen cycle is completed and
the choice is offered again. This type of repeated cyclic behaviour is, for example,
exhibited by web services.

Definition 4 (Arbiter). A simple resource component R ≡ S1 +S2 + · · ·+Sn,
in a model C ≡ (P1 ‖ P2 ‖ · · · ‖ Pk) ��

L
R is an arbiter between P1, P2, . . . , Pk if

for all i ∈ 1, . . . , k and j ∈ 1, . . . , n, if A(Pi) ∩ A(Sj) �= ∅ then A(Sj) ⊆ A(Pi).

Example 3: A simple web service. Consider a system in which two clients
interact with a web service WS. Client1 repeatedly generates tasks of type 1
which it submits to the web service and waits for a response before displaying
the results. Client2 generates tasks of type 2 or type 3. Type 2 tasks require
interaction with the web service, analogously to type 1 tasks, whereas type 3
tasks are processed locally before display. The PEPA model is the following.

Client1
def= (task1, t1).(request1, ρ1).Client′1

Client′1
def= (response1, �).(display, d).Client1

Client2
def= (task2, t2).(request2, ρ2).Client′2
+ (task3, t3).(process, p).(display, d).Client2

Client′2
def= (response2, �).(display, d).Client2

WS def= (request1, �).(response1, r1).WS + (request2, �).(response2, r2).WS
Web Service def=

(
Client1 ‖ Client2

)
��

L
WS

where L = {request1, response1, request2, response2}. In this model, component
WS is an arbiter between components Client1 and Client2.
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Proposition 1. If a simple resource component R is an arbiter within a PEPA
model C, then R is a function-equivalent component and thus can be removed
from the model, the Markov process generated by the resulting model C′ being
isomorphic to the Markov process underlying C.

Proof: As all activities of an arbiter component are shared activities, each step
of the evolution of this component coincide with one step of evolution of one of
the other components of the model. The structure of the arbiter, and the form
of its interaction with the other components of the model ensure that even if it
changes state during the evolution of the model, all its states can be inferred
from the other components of the model. �

Such a component allows two or more other components of the model to indi-
rectly influence one another. This kind of interaction between the components
can be managed using functions in the rates of their shared activities. The defini-
tion of these functions takes into account the states of the components involved
in the cooperation. This allows the model to keep the form of scheduling initially
imposed by R.

The introduction of appropriate functional rates instead of an arbiter com-
ponent will not have any impact on the correctness of the model and thus the
Markov process underlying the reduced model is guaranteed to be isomorphic to
the one generated by the initial model.

Corollary 1. If a simple resource component R is a single state arbiter within
a PEPA model C, then R is an identity function-equivalent component and thus
can be removed from the model, the Markov process generated by the resulting
model C′ being isomorphic to the Markov process underlying C (subject to some
transfer of rates when C is passive with respect to an activity).

This corresponds to the case of an arbiter in which the cycle of each component
Si in R has only one activity:

R
def= (α1, r1).R + (α2, r2).R + . . . + (αn, rn).R

As R always exhibits the same state and all its activities are shared activities,
R can be removed from the model. This type of component does not enforce
any scheduling between the other components of the model as the cycle defining
the use of R by any component Pi is limited to one activity. For this reason
its removal is not conditioned by the use of functional rates. Therefore, when
removed, R can be replaced by an identity function in the other components
which share R’s activities.

However we should consider carefully the activity rates of R. If all activities
have unspecified rates (�), then the rate of these activities are already defined
by the other components of the model. So R can be eliminated without any
impact on the other components of the model. If at least one of its activities α
has a specified rate, then we need to compute the rate of each instance of α in
each component Pi which shares this activity with R. As explained in Section 6
this computation takes place during the generation of the derivation graph.
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In the following section, we show how an arbiter component can be eliminated
from the model using functional rates.

4 A Function Based Simplification Approach

In PEPA components are able to influence one another in two ways, both related
to activities. The first one is a direct interaction between the components and
is modelled using shared activities (cooperation). The other form of interaction
is less direct as the activity rate within a component can be influenced by the
local states of one or more other components in the model. This implies that
the activity may or may not be performed by the component according to a rate
value determined by the current state of the other component(s). Indeed, this
rate may have any non-negative value, including zero which aborts the activity.

In general, the use of functional rates can lead to a reduction in the model
expression because they avoid explicitly modelling all parts of a system’s be-
haviour. This is the case for PEPA models with arbiter resource components.

We have seen so far an arbiter component may be necessary to ensure the
correct behaviour of a model; they enforce the necessary scheduling between
the model’s components. Thus, an arbiter component may be seen as another
indirect means for the components of a model to influence one another. But,
as stated previously, this is exactly what the functional rates allow us to do
in PEPA. Therefore, we propose to replace arbiter components using functional
rates in the other components of the model with which they share their activities.
For example, consider again the web service model (Example 3). In this model,
component WS is an arbiter component and therefore can be removed from the
model and replaced with appropriate functions as follows:

Client1
def= (task1, t1).(request1, f × ρ1).Client′1

Client′1
def= (response1, r1).(display, d).Client1

Client2
def= (task2, t2).(request2, g × ρ2).Client′2
+ (task3, t3).(process, p).(display, d).Client2

Client′2
def= (response2, r2).(display, d).Client2

Web Service2 def= Client1 ‖ Client2

where f and g are defined as follows:

f(x) =
{

0 if x ≡ Client′2
1 otherwise g(y) =

{
0 if y ≡ Client′1
1 otherwise

y and x being the state of component Client1 and Client2 respectively.

Example 4: A multiprocessor shared memory. Consider a system in which
two processors compete for access to a shared memory via a bus. The processors
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are independent and both follow the same pattern of behaviour: each does com-
putations, acquires the bus, sends the message and then releases the bus.

Proc def= (compute, r1).(acquire, r2).Proc′ Bus def= (acquire, �).Bus′

Proc′ def= (transmit, r3).(release, r4).Proc Bus′ def= (release, �).Bus

Memory def= (transmit, �).Memory

Machine def=
(
(Proc ‖ Proc) ��

L1
Bus

)
��
L2

Memory

where L1 = {acquire, release} and L2 = {transmit}. In this model, components
Memory and Bus are arbiter components and therefore can be removed from
the model. The elimination of Memory is straightforward and does not require
the modification of the other components because the rate of the shared activity
transmit is unspecified in Memory. In contrast, in order to remove component
Bus, we need to introduce appropriate functional rates in the other components
where the cooperation activities acquire and release appear. By doing so, we
obtain the following model:

Proc10
def= (compute, r1).Proc11 Proc20

def= (compute, r1).Proc21

Proc11
def= (acquire, f1 × r2).Proc12 Proc21

def= (acquire, f2 × r2).Proc22

Proc12
def= (transmit, r3).Proc13 Proc22

def= (transmit, r3).Proc23

Proc13
def= (release, g1 × r4).Proc10 Proc23

def= (release, g2 × r4).Proc20

Machine′ def= Proc10 ‖ Proc20

where fj and gj, j = 1, 2, are functions defined, when k = 1, 2 k �= j, as

fj(y) =
{

1 if y ≡ Prock0
0 otherwise gj(x) =

{
1 if x ≡ Prock0
0 otherwise

x and y being the state of Prock appropriately. Note that the functions gj are
not essential for the correct behaviour of the model and may be omitted. The
functions fj are sufficient to guarantee the correct behaviour of the model.
Both previous examples show that the functions are only necessary in the first
activity that a component P shares with the resource component. For P , the
function associated with the rate of the first activity can be regarded as the
access ticket to the resource component and this ticket must be validated to
make the access possible. Once P is using the resource component, the other
components of the model cannot use it.

5 Interplay Between the Function-Based Simplification
Approach and the Aggregation Technique

There is an established aggregation technique for PEPA models based on the
notion of strong equivalence between states. The aggregation may result in a
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single component being substituted for a number of components. Thus, like the
function-based simplification technique, it can result in a reduction in the model
expression. However, in the case of aggregation, this usually had the consequence
that the underlying state space is also reduced. This suggests that the best results
may be obtained if the two techniques are applied in conjunction. In this section
we make some observations about how this can be achieved and the interplay
between the two techniques.

Recall that if C is the set of all PEPA components, and q[P, S, α] is the total
conditional transition rate from component P to the set of components S, then
strong equivalence is defined as follows:

Definition 5 (Strong equivalence). An equivalence relation R ⊆ C × C is a
strong equivalence if whenever (P, Q)∈R then for all α∈A and for all S∈C/R

q[P, S, α] = q[Q, S, α]

In many cases strong equivalence exists between the derivatives of a model be-
cause there is strong equivalence between components of the model and their
interleaving can be eliminated.

Let us consider the original model of the multiprocessor system as given in
Example 4 and apply the aggregation technique on component Proc ‖ Proc
of the system equation. The model resulting from such an operation is the
following, where a single derivative represents each equivalence class.

Procs00
def= (compute, 2r1).Procs01 [(Proc10, Proc20)]00

Procs01
def= (compute, r1).Procs11
+ (acquire, r2).Procs02 [(Proc10, Proc21), (Proc11, Proc20)]01

Procs02
def= (transmit, r3).Procs03
+ (compute, r1).Procs12 [(Proc10, Proc22), (Proc12, Proc20)]02

Procs03
def= (compute, r1).Procs13
+ (release, r4).Procs00 [(Proc10, Proc23), (Proc13, Proc20)]03

Procs11
def= (acquire, 2r2).Procs12 [(Proc11, Proc21)]11

Procs12
def= (transmit, r3).Procs13 [(Proc11, Proc22), (Proc12, Proc21)]12

Procs13
def= (release, r4).Procs01 [(Proc11, Proc23), (Proc13, Proc21)]13

Bus def= (acquire, �).(release, �).Bus Memory def= (transmit, �).Memory

Machinea
def=

(
Procs00 ��

L1
Bus

)
��
L2

Memory

where L1 = {acquire, release} and L2 = {transmit}. In the new model, Memory
is a single state arbiter component as before, and its removal is straightforward.
Similarly, Bus is also an arbiter component as before. However, we would like
to highlight that in the aggregated model, its removal is no longer conditioned
by the use of functional rates in the other components of the model. Indeed, the
aggregation has reduced the number of components that have to cooperate with
Bus to one component. Moreover, the scheduling imposed previously by Bus
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between the two model components Proc is already taken into account in the
resulting component Procs00. Therefore the removal of Bus becomes straightfor-
ward and the new system equation is Machine′a

def= Procs00.
In contrast, if we first apply the function-based simplification technique we

obtain the model Machine′ def= Proc10 ‖ Proc20 defined earlier in which Proc1
and Proc2 involve functional rates. In order to apply aggregation to this model
we must first define strong equivalence for components which contain functional
rates. The original definition of strong equivalence suggests that this will be
achieved by extending the definition of conditional transition rate to include the
possibility that the transition rate concerned may be a function.

Definition 6 (Conditional transition rate). The conditional transition rate
between two derivatives Ci and Cj, via a given action type α, denoted
q(Ci, Cj , α), is defined to be the sum of the constant and the functional activity
rates associated with transitions between Ci and Cj in the derivation graph which
are labelled by α.

Note that the evaluation of a function is unequivocal because we are considering
the transition rates from a particular derivative. Each derivative corresponds
to a particular set of local states for each component, thus determining the
appropriate value of the function.

The total conditional transition rate to a set is defined, as previously, as the
sum of conditional transition rates from the component to elements of the set.
Thus it follows that two derivatives with functional rates for an action type α
will be strongly equivalent if the functions in each derivative will give the same
transition rate to each strong equivalence class. For the example above this is
readily shown to be the case. In the cases where the equivalence class has more
than one element it is clear that Proc10 ‖ Proc2k

∼= Proc1k ‖ Proc20 for all
k = 0, 1, 2, 3 and f1 and f2 (g1 and g2) will have the same evaluation.

If the techniques are considered as alternative means of model simplification
there is a clear preference for strong equivalence based aggregation since this
can reduce the size of the underlying state space. But when both techniques are
applicable, it seems that it is possible to apply the techniques in either order.
However, in general, establishing strong equivalence without functional rates
will be less involved and therefore to be preferred computationally. Moreover,
as we have seen, first carrying out the aggregation to remove interleavings may
simplify the function-based reduction because the need for functions to control
scheduling may have been eliminated.

In the following we describe the algorithm that allows the simplification of a
PEPA model by removing the arbiter components.

6 An Algorithm for Eliminating Arbiter Components

Assume that R is an arbiter in model C, i.e. R is a simple resource component
R ≡ S1 +S2 + · · ·+Sn, in a model C ≡ (P1 ‖ P2 ‖ · · · ‖ Pk) ��

L
R. Then for each

component Pi we can partition the derivative set of Pi into two disjoint subsets
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dsR(Pi), corresponding to states where Pi is “using” R and dsfree(Pi) where it
is not. A component is “using” the resource when it has cooperated on the first
activity of one of the cycles Si in R, but not yet cooperated on the last activity
of the cycle.

ds(Pi) = dsR(Pi) ∪ dsfree(Pi) dsR(Pi) ∩ dsfree(Pi) = ∅

Moreover, we denote by C state(Pi) the current state of component Pi and define
the two sets B(α) and Input(R). The former contains the components which have
α in their action type set and the latter the action types that component R may
engage in, in its initial state.

Single state arbiter components. This type of component has only one
derivative but may have the choice between several activities to engage in.

R
def= (α1, r1).R + (α2, r2).R + . . . + (αn, rn).R

As stated before, when such a component is removed, logically it can be replaced
by an identity function because it does not enforce any scheduling between the
other components of the model. In practical terms the introduction of such a
function can be omitted as it has no impact on the behaviour but overloads the
notation and introduces an unnecessary extra computation time.

However, when removing such a component from a model, we should pay
attention to the rates of the activities in this component. These rates may be
real values or unspecified rates and according to this the elimination of this
component may or may not bring changes to the other components of the model.

1. If all the activities enabled by the arbiter component have unspecified rates,
then the component can be removed automatically from the model without
any changes in the other components of the model.

2. If the rate of an action type αi ∈ A(R) is specified, then for each component
Pj in the model and each instance α∗

i of αi in Act(Pj), a new rate should
be computed. For that we need to know the current state of each compo-
nent in B(α). To define this within a function would necessitate a complete
derivation of the state space of the remainder of the model. Thus we leave
this to be done during the usual generation of the derivation graph of the
model. For each arc of the graph to generate with label α, we consider the
components in competition for this action type and compute the associated
rate for α considering the rates of these components at this stage of the
graph. The functions instead are used to control whether an activity of this
type should be allowed or not, without complete specification of the rate.
Thus our functions always have the value 1 or 0 which can be regarded as
switching an activity on or off respectively.

Note that from the point of view of the state space, the removal of a single state
arbiter component does not bring any benefit.
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Multi-states arbiter components. Unlike single state arbiter components,
the removal of these components from the model allows us to reduce the size of
the model, its representation and its state space when the Kronecker form is the
internal representation used.

The general algorithm consists mainly in defining, for each component Pi

and action type α shared between this component and an arbiter component,
a function gi(α). This function allows Pi to know when the arbiter component
is free and thus usable. Application of the algorithm takes place at the model
(syntactic) level and results in the removal of all arbiter components.

//Algorithm

for each component Pi

// define a function fi over ds(Pi)
for each P ′

i ∈ ds(Pi)

fi =
{

1 if P ′
i ∈ dsfree(Pi)

0 if P ′
i ∈ dsR(Pi)

end for
end for

for each α ∈ Input(R)
for each Pj ∈ B(α)

gj(α)=
n∏

i=1,i�=j

P ′
i =C State(Pi)

fi(P ′
i )

replace (α, r) in Pj by
(α, gj(α) × r)

end for
end for

7 Related Work
Current research addresses the definition of efficient techniques for constructing
and analysing large models. These techniques fall into two categories: “largeness
avoidance” and “largeness tolerance” [9]. While the former refers to approaches
that aim to keep the size of the model representation as small as possible at
every stage of the modelling and analysis process, the latter category focusses
on sparse storage techniques and memory-efficient numerical methods.

Like decomposition techniques, the Kronecker approach, and techniques which
exploit model symmetries, the function-equivalent components based simplifica-
tion technique belongs to the first category. However, unlike these techniques
which have been widely reported in the literature, the possibility of using func-
tional rates to eliminate components has not really been investigated. This tech-
nique has been identified for SAN for some time [5]. However, to the best of
our knowledge, there has not been any work on a systematic way to identify
suitable components and automatically eliminate them. Instead the previous
approach relies on the expertise/skill of the modeller. Here we can envisage the
elimination being carried out transparently to the user since the identification
of suitable components is based on readily checked syntactic conditions, and the
algorithm of the previous section provides an automatic means of carrying out
the reduction.

Process algebras which encompass functions have previously appeared in the
literature (see for example μCRL [6][7]). However the role of the functions here
is somewhat different. Moreover this is the first stochastic process algebra to
incorporate them.
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8 Conclusions

In this paper, we have identified a class of function-equivalent PEPA components
and we have shown, using functional rates, that any component of this class can
be eliminated from a model. An algorithm allowing the automatic removal of
these components has been developed.

This new simplification technique allows the reduction of the number of com-
ponents in a model and thus the number of matrices required for a Kronecker
representation of the underlying Markov process, when this internal representa-
tion is used. Furthermore the model expression is simplified although the state
space remains the same and subsequent solution is exact.

Moreover, we have investigated the interplay between this simplification ap-
proach and the aggregation technique characterised by strong equivalence in
PEPA. Combining these techniques, when possible, may allow the modeller to
push the current limits of PEPA in terms of tractable systems. Our goal in the
future is to extend the class of function-equivalent components and to integrate
this new simplification approach into the PEPA Workbench [8].
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