Skip to main content

Functional Performance Specification with Stochastic Probes

  • Conference paper
Formal Methods and Stochastic Models for Performance Evaluation (EPEW 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4054))

Included in the following conference series:

Abstract

In this paper, we introduce FPS, a mechanism to define performance measures for stochastic process algebra models. FPS is a functional performance specification language which describes passage-time, transient, steady-state and continuous state space performance questions. We present a generalisation of stochastic probes, a formalism-independent specification of behaviour in stochastic process algebra models. Stochastic probes select the performance-critical paths for which the measures are required; increasing their expressiveness in turn gives us greater expressive power to represent performance questions. We end by demonstrating these tools on an RSS syndication architecture of up to 1.5×1051 states.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Obal, W.D., Sanders, W.H.: State-space support for path-based reward variables. Performance Evaluation 35, 233–251 (1999)

    Article  MATH  Google Scholar 

  2. Argent-Katwala, A., Bradley, J.T., Dingle, N.J.: Expressing performance requirements using regular expressions to specify stochastic probes over process algebra models. In: Almeida, V., Lea, D. (eds.) WOSP 2004, Proceedings of the 4th International Workshop on Software and Performance, Redwood City, California, pp. 49–58. ACM, New York (2004)

    Chapter  Google Scholar 

  3. Woodside, C.M., Shramm, C.: Complex performance measurements with NICE (notation for interval combinations and events). Software—Practice and Experience 24, 1121–1144 (1994)

    Article  Google Scholar 

  4. Baier, C., Cloth, L., Haverkort, B.R., Kuntz, M., Siegle, M.: Model checking action- and state-labelled Markov chains. In: DSN 2004, Proceedings of International Conference on Dependable Systems and Networks, pp. 701–710 (June 2004)

    Google Scholar 

  5. Hermanns, H., Herzog, U., Klehmet, U., Mertsiotakis, V., Siegle, M.: Compositional performance modelling with the TIPPtool. Performance Evaluation 39(1–4), 5–35 (2000)

    Article  MATH  Google Scholar 

  6. Kleene, S.C.: Representation of events in nerve nets and finite automata. In: Shannon, C.E., McCarthy, J. (eds.) Automata Studies, pp. 3–41. Princeton University Press, Princeton (1956)

    Google Scholar 

  7. Hillston, J.: A Compositional Approach to Performance Modelling. Distinguished Dissertations in Computer Science, vol. 12. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  8. Bernardo, M., Gorrieri, R.: Extended Markovian Process Algebra. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 315–330. Springer, Heidelberg (1996)

    Google Scholar 

  9. Ayles, T., Field, A.J., Magee, J.N.: Adding performance evaluation to the LTSA tool. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794. Springer, Heidelberg (2003)

    Google Scholar 

  10. Bradley, J.T., Dingle, N.J., Gilmore, S.T., Knottenbelt, W.J.: Derivation of passage-time densities in PEPA models using ipc: the Imperial PEPA Compiler. In: Kotsis, G. (ed.)Proceedings of the 11th IEEE/ACM International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunications Systems, MASCOTS 2003, pp. 344–351. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  11. Gilmore, S., Hillston, J.: Feature interaction in PEPA. In: Priami, C. (ed.) Process Algebra and Performance Modelling Workshop, Università Degli Studi di Verona, Nice, pp. 17–26 (September 1998)

    Google Scholar 

  12. Gilmore, S., Hillston, J., Clark, G.: Specifying performance measures for PEPA. In: Katoen, J.-P. (ed.) AMAST-ARTS 1999, ARTS 1999, and AMAST-WS 1999. LNCS, vol. 1601, pp. 211–227. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  13. Aziz, A., Sanwal, K., Singhal, V., Brayton, R.: Verifying continuous-time Markov chains. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 269–276. Springer, Heidelberg (1996)

    Google Scholar 

  14. Baier, C., Katoen, J.-P., Hermanns, H.: Approximate symbolic model checking of continuous-time Markov chains. In: Baeten, J.C.M., Mauw, S. (eds.) CONCUR 1999. LNCS, vol. 1664, pp. 146–162. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  15. Kwiatkowska, M., Norman, G., Parker, D.: PRISM: Probabilistic symbolic model checker. In: Field, T., Harrison, P.G., Bradley, J., Harder, U. (eds.) TOOLS 2002. LNCS, vol. 2324, pp. 200–204. Springer, Heidelberg (2002)

    Google Scholar 

  16. Hillston, J.: Fluid flow approximation of PEPA models. In: QEST 2005, Proceedings of the 2nd International Conference on Quantitative Evaluation of Systems, Torino, pp. 33–42. IEEE Computer Society Press, Los Alamitos (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Argent-Katwala, A., Bradley, J.T. (2006). Functional Performance Specification with Stochastic Probes. In: Horváth, A., Telek, M. (eds) Formal Methods and Stochastic Models for Performance Evaluation. EPEW 2006. Lecture Notes in Computer Science, vol 4054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11777830_3

Download citation

  • DOI: https://doi.org/10.1007/11777830_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35362-1

  • Online ISBN: 978-3-540-35365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics