Skip to main content

Explicit Inverse Characterizations of Acyclic MAPs of Second Order

  • Conference paper
Formal Methods and Stochastic Models for Performance Evaluation (EPEW 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4054))

Included in the following conference series:

  • 335 Accesses

Abstract

This paper shows how to construct a Markovian arrival process of second order from information on the marginal distribution and on its autocorrelation function. More precisely, closed-form explicit expressions for the MAP(2) rate matrices are given in terms of the first three marginal moments and one parameter that characterizes the behavior of the autocorrelation function. Besides the permissible moment ranges, which were known before, also the necessary and sufficient bounds for the correlation parameter are computed and shown to depend on a free parameter related to equivalent acyclic PH(2) representations of the marginal distribution. We identify the choices for the free parameter that maximize the correlation range for both negative and positive correlation parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Neuts, M.: Matrix-Geometric Solutions in Stochastic Models. John Hopkins University Press (1981)

    Google Scholar 

  2. Neuts, M.: Structured Stochastic Matrices of M/G/1-type and their Applications. Marcel Dekker, New York (1989)

    MATH  Google Scholar 

  3. Latouche, G., Ramaswami, V.: Introduction to Matrix-Analytic Methods in Stochastic Modeling. Series on statistics and applied probability. ASA-SIAM, Philadelphia (1999)

    Book  Google Scholar 

  4. Buchholz, P.: An EM-algorithm for MAP fitting from real traffic data. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 218–236. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  5. Horváth, G., Buchholz, P., Telek, M.: A MAP fitting approach with independent approximation of the inter-arrival time distribution and the lag correlation. In: Proc. 2nd Int. Conf. on Quantitative Evaluation of Systems, Torino, Italy, pp. 124–133 (2005)

    Google Scholar 

  6. Horváth, A., Telek, M.: Markovian modeling of real data traffic: Heuristic phase-type and MAP fitting of heavy tailed and fractal-like samples. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Horváth, A., Telek, M.: Fitting more than three moments with acyclic phase-type distributions (submitted, 2006)

    Google Scholar 

  8. Telek, M., Heindl, A.: Matching moments for acyclic discrete and continuous phase-type distributions of second order. Intl. Journal of Simulation 3, 47–57 (2003)

    Google Scholar 

  9. Bobbio, A., Horváth, A., Telek, M.: Matching three moments with minimal acyclic phase-type distributions. Stochastic Models 21, 303–323 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Mitchell, K., van de Liefvoort, A.: Approximation models of feed-forward G/G/1/N queueing networks with correlated arrivals. Performance Evaluation 51, 137–152 (2003)

    Article  Google Scholar 

  11. Mitchell, K.: Constructing a correlated sequence of matrix exponentials with invariant first-order properties. Operations Research Letters 28, 27–34 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Heindl, A., Mitchell, K., van de Liefvoort, A.: The correlation region of second-order MAPs with application to queueing network decomposition. In: Kemper, P., Sanders, W.H. (eds.) TOOLS 2003. LNCS, vol. 2794, pp. 237–254. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. Heindl, A.: Inverse characterization of hyperexponential MAP(2)s. In: Proc. 11th Int. Conference on Analytical and Stochastic Modelling Techniques and Applications, Magdeburg, Germany, pp. 183–189 (2004)

    Google Scholar 

  14. Heffes, H., Lucantoni, D.M.: A Markov-modulated characterization of packetized voice and data traffic and related statistical multiplexer performance. IEEE J. on Selected Areas in Commun. 4, 856–868 (1986)

    Article  Google Scholar 

  15. Ferng, H.W., Chang, J.F.: Connection-wise end-to-end performance analysis of queueing networks with MMPP inputs. Performance Evaluation 43, 39–62 (2001)

    Article  MATH  Google Scholar 

  16. Livny, M., Melamed, B., Tsiolis, A.K.: The impact of autocorrelation on queueing systems. Management Science 39, 322–339 (1993)

    Article  MATH  Google Scholar 

  17. Patuwo, B., Disney, R., McNickle, D.: The effect of correlated arrivals on queues. IIE Transactions 25, 105–110 (1993)

    Article  Google Scholar 

  18. Neuts, M.: Algorithmic Probability: A Collection of Problems. Chapman and Hall, Boca Raton (1995)

    MATH  Google Scholar 

  19. van de Liefvoort, A.: The moment problem for continuous distributions. Technical Report WP-CM-1990-02, School of Computing and Engineering, University of Missouri – Kansas City, USA (1990)

    Google Scholar 

  20. Gross, K.: Analytische Konstruktion korrelierter Prozesse zur Lastmodellierung in Kommunikationssystemen. Master’s thesis, Informatik 7, Universität Erlangen-Nürnberg, Germany (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Heindl, A., Horváth, G., Gross, K. (2006). Explicit Inverse Characterizations of Acyclic MAPs of Second Order. In: Horváth, A., Telek, M. (eds) Formal Methods and Stochastic Models for Performance Evaluation. EPEW 2006. Lecture Notes in Computer Science, vol 4054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11777830_8

Download citation

  • DOI: https://doi.org/10.1007/11777830_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35362-1

  • Online ISBN: 978-3-540-35365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics