Abstract
We present a timed extension of the classical finite state machines model where time is introduced in two ways. On the one hand, timeouts can be specified, that is, we can express that if an input action is not received before a fix amount of time then the machine will change its state. On the other hand, we can associate time with the performance of actions. In this case, time will be given by means of random variables. Intuitively, we will not have conditions such as “the action a takes t time units to be performed” but conditions such as “the action a will be completed before time t with probability p.” In addition to introducing the new language, we present several conformance relations to relate implementations and specifications that are defined in terms of our new notion of stochastic finite state machine.
Research partially supported by the Spanish MCYT project TIC2003-07848-C02-01, the Junta de Castilla-La Mancha project PAC-03-001, and the Marie Curie project MRTN-CT-2003-505121/TAROT.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)
Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202, 1–54 (1998)
Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theoretical Computer Science 282(1), 5–32 (2002)
Brémond-Grégoire, P., Lee, I.: A process algebra of communicating shared resources with dense time and priorities. Theoretical Computer Science 189(1-2), 179–219 (1997)
Bosik, B.S., Uyar, M.U.: Finite state machine based formal methods in protocol conformance testing. Computer Networks & ISDN Systems 22, 7–33 (1991)
Cazorla, D., Cuartero, F., Valero, V., Pelayo, F.L., Pardo, J.J.: Algebraic theory of probabilistic and non-deterministic processes. Journal of Logic and Algebraic Programming 55(1–2), 57–103 (2003)
Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)
Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilistic processes. Information and Computation 154(2), 93–148 (1999)
Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)
Clarke, D., Lee, I.: Automatic generation of tests for timing constraints from requirements. In: 3rd Workshop on Object-Oriented Real-Time Dependable Systems (1997)
D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems part I: Stochastic automata. Information and Computation 203(1), 1–38 (2005)
En-Nouaary, A., Dssouli, R.: A guided method for testing timed input output automata. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS, vol. 2644, pp. 211–225. Springer, Heidelberg (2003)
van Glabbeek, R., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Information and Computation 121(1), 59–80 (1995)
Hermanns, H.: Interactive Markov Chains. PhD thesis, Universität Erlangen-Nürnberg (1998)
Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)
Higashino, T., Nakata, A., Taniguchi, K., Cavalli, A.: Generating test cases for a timed I/O automaton model. In: 12th Workshop on Testing of Communicating Systems, pp. 197–214. Kluwer Academic Publishers, Dordrecht (1999)
Hennessy, M., Regan, T.: A process algebra for timed systems. Information and Computation 117(2), 221–239 (1995)
López, N., Núñez, M.: A testing theory for generally distributed stochastic processes. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 321–335. Springer, Heidelberg (2001)
López, N., Núñez, M., Rodríguez, I.: Specification, testing and implementation relations for symbolic-probabilistic systems. Theoretical Computer Science 353(1–3), 228–248 (2006)
Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines: A survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)
Núñez, M., Rodríguez, I.: PAMR: A process algebra for the management of resources in concurrent systems. In: Núñez, M., Rodríguez, I. (eds.) FORTE 2001, pp. 169–185. Kluwer Academic Publishers, Dordrecht (2001)
Núñez, M., Rodríguez, I.: Encoding PAMR into (timed) EFSMs. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 1–16. Springer, Heidelberg (2002)
Núñez, M., Rodríguez, I.: Towards testing stochastic timed systems. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767, pp. 335–350. Springer, Heidelberg (2003)
Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer, Heidelberg (1992)
Núñez, M.: Algebraic theory of probabilistic processes. Journal of Logic and Algebraic Programming 56(1–2), 117–177 (2003)
Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes. Theoretical Computer Science 58, 249–261 (1988)
Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic automata. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 464–477. Springer, Heidelberg (2003)
Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed automata. Theoretical Computer Science 254(1-2), 225–257 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Merayo, M.G., Núñez, M., Rodríguez, I. (2006). Implementation Relations for Stochastic Finite State Machines. In: Horváth, A., Telek, M. (eds) Formal Methods and Stochastic Models for Performance Evaluation. EPEW 2006. Lecture Notes in Computer Science, vol 4054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11777830_9
Download citation
DOI: https://doi.org/10.1007/11777830_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35362-1
Online ISBN: 978-3-540-35365-2
eBook Packages: Computer ScienceComputer Science (R0)