Skip to main content

Implementation Relations for Stochastic Finite State Machines

  • Conference paper
Formal Methods and Stochastic Models for Performance Evaluation (EPEW 2006)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 4054))

Included in the following conference series:

  • 349 Accesses

Abstract

We present a timed extension of the classical finite state machines model where time is introduced in two ways. On the one hand, timeouts can be specified, that is, we can express that if an input action is not received before a fix amount of time then the machine will change its state. On the other hand, we can associate time with the performance of actions. In this case, time will be given by means of random variables. Intuitively, we will not have conditions such as “the action a takes t time units to be performed” but conditions such as “the action a will be completed before time t with probability p.” In addition to introducing the new language, we present several conformance relations to relate implementations and specifications that are defined in terms of our new notion of stochastic finite state machine.

Research partially supported by the Spanish MCYT project TIC2003-07848-C02-01, the Junta de Castilla-La Mancha project PAC-03-001, and the Marie Curie project MRTN-CT-2003-505121/TAROT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Alur, R., Dill, D.: A theory of timed automata. Theoretical Computer Science 126, 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bernardo, M., Gorrieri, R.: A tutorial on EMPA: A theory of concurrent processes with nondeterminism, priorities, probabilities and time. Theoretical Computer Science 202, 1–54 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bravetti, M., Gorrieri, R.: The theory of interactive generalized semi-Markov processes. Theoretical Computer Science 282(1), 5–32 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Brémond-Grégoire, P., Lee, I.: A process algebra of communicating shared resources with dense time and priorities. Theoretical Computer Science 189(1-2), 179–219 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bosik, B.S., Uyar, M.U.: Finite state machine based formal methods in protocol conformance testing. Computer Networks & ISDN Systems 22, 7–33 (1991)

    Article  Google Scholar 

  6. Cazorla, D., Cuartero, F., Valero, V., Pelayo, F.L., Pardo, J.J.: Algebraic theory of probabilistic and non-deterministic processes. Journal of Logic and Algebraic Programming 55(1–2), 57–103 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chakrabarti, A., de Alfaro, L., Henzinger, T.A., Stoelinga, M.: Resource interfaces. In: Alur, R., Lee, I. (eds.) EMSOFT 2003. LNCS, vol. 2855, pp. 117–133. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Cleaveland, R., Dayar, Z., Smolka, S.A., Yuen, S.: Testing preorders for probabilistic processes. Information and Computation 154(2), 93–148 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  9. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge (2000)

    Google Scholar 

  10. Clarke, D., Lee, I.: Automatic generation of tests for timing constraints from requirements. In: 3rd Workshop on Object-Oriented Real-Time Dependable Systems (1997)

    Google Scholar 

  11. D’Argenio, P.R., Katoen, J.-P.: A theory of stochastic systems part I: Stochastic automata. Information and Computation 203(1), 1–38 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  12. En-Nouaary, A., Dssouli, R.: A guided method for testing timed input output automata. In: Hogrefe, D., Wiles, A. (eds.) TestCom 2003. LNCS, vol. 2644, pp. 211–225. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  13. van Glabbeek, R., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Information and Computation 121(1), 59–80 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hermanns, H.: Interactive Markov Chains. PhD thesis, Universität Erlangen-Nürnberg (1998)

    Google Scholar 

  15. Hillston, J.: A Compositional Approach to Performance Modelling. Cambridge University Press, Cambridge (1996)

    Book  Google Scholar 

  16. Higashino, T., Nakata, A., Taniguchi, K., Cavalli, A.: Generating test cases for a timed I/O automaton model. In: 12th Workshop on Testing of Communicating Systems, pp. 197–214. Kluwer Academic Publishers, Dordrecht (1999)

    Google Scholar 

  17. Hennessy, M., Regan, T.: A process algebra for timed systems. Information and Computation 117(2), 221–239 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. López, N., Núñez, M.: A testing theory for generally distributed stochastic processes. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154, pp. 321–335. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  19. López, N., Núñez, M., Rodríguez, I.: Specification, testing and implementation relations for symbolic-probabilistic systems. Theoretical Computer Science 353(1–3), 228–248 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  20. Lee, D., Yannakakis, M.: Principles and methods of testing finite state machines: A survey. Proceedings of the IEEE 84(8), 1090–1123 (1996)

    Article  Google Scholar 

  21. Núñez, M., Rodríguez, I.: PAMR: A process algebra for the management of resources in concurrent systems. In: Núñez, M., Rodríguez, I. (eds.) FORTE 2001, pp. 169–185. Kluwer Academic Publishers, Dordrecht (2001)

    Google Scholar 

  22. Núñez, M., Rodríguez, I.: Encoding PAMR into (timed) EFSMs. In: Peled, D.A., Vardi, M.Y. (eds.) FORTE 2002. LNCS, vol. 2529, pp. 1–16. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  23. Núñez, M., Rodríguez, I.: Towards testing stochastic timed systems. In: König, H., Heiner, M., Wolisz, A. (eds.) FORTE 2003. LNCS, vol. 2767, pp. 335–350. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  24. Nicollin, X., Sifakis, J.: An overview and synthesis on timed process algebras. In: Larsen, K.G., Skou, A. (eds.) CAV 1991. LNCS, vol. 575, pp. 376–398. Springer, Heidelberg (1992)

    Google Scholar 

  25. Núñez, M.: Algebraic theory of probabilistic processes. Journal of Logic and Algebraic Programming 56(1–2), 117–177 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  26. Reed, G.M., Roscoe, A.W.: A timed model for communicating sequential processes. Theoretical Computer Science 58, 249–261 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  27. Stoelinga, M., Vaandrager, F.: A testing scenario for probabilistic automata. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 464–477. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  28. Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed automata. Theoretical Computer Science 254(1-2), 225–257 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Merayo, M.G., Núñez, M., Rodríguez, I. (2006). Implementation Relations for Stochastic Finite State Machines. In: Horváth, A., Telek, M. (eds) Formal Methods and Stochastic Models for Performance Evaluation. EPEW 2006. Lecture Notes in Computer Science, vol 4054. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11777830_9

Download citation

  • DOI: https://doi.org/10.1007/11777830_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-35362-1

  • Online ISBN: 978-3-540-35365-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics