Abstract
The class of semi-rational dag languages can be characterized by labeled Petri nets with ε-transitions, by rather simple leaf substituting tree grammars with additional non-local merge rules, or as a synchronization closure of Courcelles class of recognizable sets of unranked, unordered trees. However, no direct recognition by some magma is known. For a better understanding, we present here some examples of languages within and without the class of semi-rational dag languages.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Thomas, W.: Finite-state recognizability of graph properties. In: Krob, D. (ed.) Theorie des Automates et Applications, vol. 172, pp. 147–159. l’Université de Rouen, France (1992)
Kamimura, T., Slutzki, G.: Parallel and two-way automata on directed ordered acyclic graphs. Inf. Control 49, 10–51 (1981)
Comon, H., Daucher, M., Gilleron, R., Tison, S., Tommasi, M.: Tree automata techniques and application (1998), available on the Web from 13ux02.univ-lille.fr in directoty tata
Brüggemann-Klein, A., Murata, M., Wood, D.: Regular tree and hedge languages of unranked alphabets. Theor. Comp. Science Center Report HKUST-TCSC 2001-5, 29pages (2001)
Courcelle, B.: On recognizable sets and tree automata. In: Aït-Kaci, H., Nivat, M. (eds.) Resolution of Equations in Algebraic Structures, vol. 1, pp. 93–126. Academic Press, London (1989)
Priese, L.: Semi-rational Sets of DAGs. In: De Felice, C., Restivo, A. (eds.) DLT 2005. LNCS, vol. 3572, pp. 385–396. Springer, Heidelberg (2005)
Kreowski, H.J.: A comparison between Petri-nets and graph grammars. In: Noltemeier, H. (ed.) WG 1980. LNCS, vol. 100, pp. 306–317. Springer, Heidelberg (1981)
Reisig, W.: A graph grammar representation of nonsequential processes. In: Noltemeier, H. (ed.) WG 1980. LNCS, vol. 100, pp. 318–325. Springer, Heidelberg (1981)
Castellani, I., Montanara, H.: Graph grammars for distributed systems. In: Ehrig, H., Nagl, M., Rozenberg, G. (eds.) Graph Grammars 1982. LNCS, vol. 153, pp. 20–38. Springer, Heidelberg (1983)
Genrich, H.J., Janssen, D., Rozenberg, G., Thiagarajan, P.S.: Petri nets and their relation to graph grammars. In: Ehrig, H., Nagl, M., Rozenberg, G. (eds.) Graph Grammars 1982. LNCS, vol. 153, pp. 15–129. Springer, Heidelberg (1983)
Starke, P.: Graph grammars for Petri net processes. EIK 19, 199–233 (1983)
Grabowski, J.: On partial languages. Annales Societatis Mathematicas Polonae, Fundamenta Informaticae IV.2, 428–498 (1981)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Menzel, J.R., Priese, L., Schuth, M. (2006). Some Examples of Semi-rational DAG Languages. In: Ibarra, O.H., Dang, Z. (eds) Developments in Language Theory. DLT 2006. Lecture Notes in Computer Science, vol 4036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11779148_32
Download citation
DOI: https://doi.org/10.1007/11779148_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-35428-4
Online ISBN: 978-3-540-35430-7
eBook Packages: Computer ScienceComputer Science (R0)